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Preface

This book is a work in progress — including the acknowledgements below! Use at

your own peril!

Categorical systems theory is an emerging field of mathematics which seeks to

apply the methods of category theory to general systems theory. General systems

theory is the study of systems — ways things can be and change, and models thereof

— in full generality. The difficulty is that there doesn’t seem to be a single core idea of

what it means to be a “system”. Different people have, for different purposes, come up

with a vast array of different modeling techniques and definitions that could be called

“systems”. There is often little the same in the precise content of these definitions,

though there are still strong, if informal, analogies to be made accross these different

fields. This makes coming up with a mathematical theory of general systems tantalizing

but difficult: what, after all, is a system in general?

Category theory has been describe as the mathematics of formal analogy making.

It allows us to make analogies between fields by focusing not on content of the objects

of those fields, but by the ways that the objects of those fields relate to one another.

Categorical systems theory applies this idea to general systems theory, avoiding the

issue of not having a contentful definition of system by instead focusing on the ways

that systems interact with eachother and their environment.

These are the main ideas of categorical systems theory:

1. Any system interacts with its environment through an interface, which can be

described separately from the system itself.

2. All interactions of a system with its environment take place through its interface,

so that from the point of view of the environment, all we need to know about a

system is what is going on at the interface.

3. Systems interact with other systems through their respective interfaces. So, to

understand complex systems in terms of their component subsystems, we need

to understand the ways that interfaces can be connected. We call these ways that

interfaces can be connected composition patterns.
4. Given a composition pattern describing how some interface are to be connected,

and some systems with those interfaces, we should have a composite system which

v
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consists of those subsystems interacting according to the composition pattern.

The ability to form composite systems of interacting component systems is called

modularity, and is a well known boon in the design of complex systems.

In a sense, the definitions of categorical systems theory are all about modularity —

how can systems be composed of subsystems. On the other hand, the theorems of

categorical systems theory often take the form of compositionality results. These say

that certain facts and features of composite systems can be understood or calculated in

terms of their component systems and the composition pattern.

This book will follow this general paradigm. We will see definitions of systems

which foreground modularity — the ways that systems can be composed to form

more complex systems. And then we will prove a general compositionality theorem,

showing that a large class of behaviors of composite systems can be calculated in terms

of their components and the composition pattern.

This abstract overview leaves a lot of questions to be answered. What is, or what

can be a system? What is an interface? What is a composition pattern? How do we

compose systems using composition patterns? What is a behavior of a system, and

how do we study it categorically? There is no single answer to this suite of questions.

Different people working with different aims will answer these questions differently.

But we can package this suite of questions into an informal definition of a doctrine of

dynamical systems.

Informal Definition 0.0.0.1. A doctrine of dynamical systems is a particular way to answer

the following questions about it means to be a systems theory:

• What does it mean to be a system? Does it have a notion of states, or of behaviors?

Or is it a diagram describing the way some primitive parts are organized?

• What should the interface of a system be?

• How can interfaces be connected in composition patterns?

• How are systems composed through composition patterns between their inter-

faces.

• What is a map between systems, and how does it affect their interfaces?

• When can maps between systems be composed along the same composition

patterns as the systems.

We will give a semi-formal1 definition of dynamical systems doctrine in Chapter 6.

For the first five chapters of this book on the other hand, we will work within a fixed

doctrine of dynamical systems which we might call the parameter-setting doctrine. This

doctrine gives a particular answer to the above questions, based around the following

defintion of a system.

1
And for experts, a formal definition, though we won’t fully justify it.
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Informal Definition 0.0.0.2. A dynamical system consists of:

• a notion of how things can be, called the states, and

• a notion of how things will change given how they are, called the dynamics.
The dynamics of a system might also depend on some free parameters or inputs that

are imported from the environment, and we will often be interested in some particular

variables of the state that are exposed or output to the environment.

In the first two chapters, we will see a variety of examples of such systems, in-

cluding discrete-time deterministic systems, systems of differential equations, and

non-deterministic systems such as Markov decision processes. We will also see what

composition patterns can be in the parameter-setting doctrine; they can be drawn as

wiring diagrams like this:

But Informal Definition 1.1.0.1 is not so precise. Deterministic systems, systems

of differential equations, Markov decision processes, and many more sorts of systems

fit the mold, but they also differ in many important ways. Informal Definition 1.1.0.1

doesn’t tell us what the states should be (a set? a topological space? a manifold? a

graph? something else?), and it doesn’t tell us what it means to specify how things

change given how they are. We can package this suite of questions into the notion of a

theory of dynamical systems, or systems theory for short.

Informal Definition 0.0.0.3. A theory of dynamical systems — or a systems theory for

short — is a particular way to answer the following questions about what it means to

be a dynamical system:

• What does it mean to be a state?

• How should the output vary with the state — discretely, continuously, linearly?

• Can the kinds of input a system takes in depend on what it’s putting out, and

how do they depend on it?

• What sorts of changes are possible in a given state?

• What does it mean for states to change.

• How should the way the state changes vary with the input?

We will make this definition fully formal in Chapter 3, after introducing enough

category theory to state it. Once we have made the definition of systems theory formal,

we can make the definition of system. But what is interesting about dynamical systems

is how they behave.
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Informal Definition 0.0.0.4. A behavior of a dynamical system is a particular way its

states can change according to its dynamics.

There are different kinds of behavior corresponding to the different sorts of ways that

the states of a system could evolve. Perhaps they eventually repeat, or they stay the

same despite changing conditions.

In Chapter 3, we will formalize this definition of behavior for each systems theory

by noticing that for any given kind of behavior, there is almost always a system that

represents that behavior, in that it does exactly that behavior and nothing more. For

example, a point moving uniformly on a line represents a trajectory, and a point moving

on a circle represents a periodic orbit. We will also note that a particular behavior of a

system will alway requires a particular choice of parameters, which we call the chart of

the behavior.

Using this observation, we will prove our main compositionality theorem in Chap-

ter 5. This theorem states, informally, the following facts concerning the composition

of systems.

• Suppose that we are wiring our systems together in two stages. If we take a bunch

of behaviors whose charts are compatible for the total wiring pattern and wire

them together into a behavior of the whole system, this is the same behavior we

get if we first noticed that they were compatible for the first wiring pattern, wired

them together, then noticed that the result was compatible for the second wiring

pattern, and wired that together. This means that nesting of wiring diagrams

commutes with finding behaviors of our systems.

• Suppose that we have two charts and a behavior of each. Then composing a

behavior with the composite of those behaviors is the same as composing it with

the first one and then with the second one.

• Suppose that we have a pair of wiring patterns and compatible charts between

them. If we take a bunch of behaviors whose charts are compatable according to

the first wiring pattern, wire them together, and then compose with a behavior of

the second chart, we get the same thing as if we compose them all with behaviors

of the first chart, noted that they were compatible with the second wiring pattern,

and then wired them together.

These basic principles show us how the problem of understanding the behaviors

of composite systems can be broken down consistently into the hopefully smaller

problems of understanding the behaviors of their components, and the pattern of

composition.

This theorem comes down to some fully abstract category theory: the construction of

representable lax doubly indexed functors. Since the theorem is abstract, it can be applied

not only to any systems theory as in Informal Definition 1.1.0.2, but any systems

theory in any doctrine (Informal Definition 6.1.0.1). In Chapter 6, we will see two other

doctrines which give us substantially different ways to think about systems theory. But
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the compositionality theorem proven in Chapter 5 will apply to them as well.

This book is intended as a first guide to the rapidly growing field of categorical

systems theory. While the book does presume a knowledge of basic category theory

(which can be gained from any one of the many wonderful introductions to the subject

— see Section 1.1.1), the special topics needed for the definitions and theorems —

indexed categories, double categories, doubly indexed categories and their functors —

will be introduced as they become necessary.

My hope is that this book can inspire you to use categorical methods in systems

theory in your work, whenever they are useful, and to demand more from these tools

where they are not yet useful.
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Chapter 1

Wiring together dynamical systems

1.1 Introduction

Here’s a basic fact of life: things change. And how things change most often depends

on how they currently are. This is the fundamental idea underlying all the various

notions of dynamical system that we will see in this book.

Informal Definition 1.1.0.1. A dynamical system consists of:

• a notion of how things can be, called the states, and

• a notion of how things will change given how they are, called the dynamics.
The dynamics of a system might also depend on some free parameters or inputs that

are imported from the environment, and we will often be interested in some particular

variables of the state that are exposed or output to the environment.

You and I are big, complicated dynamical systems. Our bodies and minds are in

some particular configuration, and over time this configuration changes. We can sense

things — seeing, touching, tasting — and what we sense affects how our bodies and

minds change. Seeing a scary snake can make me recoil and feel fear, but seeing a cute

snake plushie can make me go over and start to pet it. Some parts of me are also put

back into the environment, like the expression on my face. But not all of me is exposed

in that way — some things just go on in my head.

This is the basic model of a dynamical system we will be working with in this

book.1 But to make the above informal definition precise, we need to answer a number

of questions:

• What should a state be, really? Do we just have an abstract set of states, or could

there be a continuum of states? Maybe there are some other structures that states

can enter into which have to be respected by the dynamics, but aren’t determined

by them? Jaz: With this last sentence, I’m thinking of “states as polynomial

comonad aka category”. Not sure how to phrase it right.

1
At least until Chapter 6, where we will encounter other doctrines of dynamical systems.

1
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• What does it mean to change? Do we want to know precisely which state will be

next if we know how things are? Or, maybe we will only have a guess at which

state will come next? Or, maybe we’ll just say how a state is tending to change,

but not where it will end up?

• Do we always take in the same sort of parameters, or does it depend on how our

system is placed in its environment? Should the dynamics vary continuously (or

linearly, or some other way) in the choice of parameters?

Different people have decided on different answers to these questions for different

purposes. Here are three of the most widespread different ways to answer those

questions:

1. We’ll assume the states form a discrete set, and that if we know the current state

and our parameters, we know exactly what the next state will be. Such a system

generally called a Moore machine or deterministic automaton.

2. We’ll assume the states form a continuum, but that we only know how a state is

tending to change, not what the “next” state will be. Such a system is generally

called a system of differential equations — the differential equations tells us the

derivatives of the state variables: the way they are tending.

3. We’ll assume the states form a discrete set, but that we only have a guess at which

state will follow from the current state. Such a system is generally called a Markov
process, or a Markov decision process.

We will call a way of answering these questions the theory of dynamical systems we

are working in.

Informal Definition 1.1.0.2. A theory of dynamical systems — or a systems theory for

short — is a particular way to answer the following questions about what it means to

be a dynamical system:

• What does it mean to be a state?

• How should the output vary with the state — discretely, continuously, linearly?

• Can the kinds of input a system takes in depend on what it’s putting out, and

how do they depend on it?

• What sorts of changes are possible in a given state?

• What does it mean for states to change.

• How should the way the state changes vary with the input?

Moore machines, differential equations, and Markov decision processes are each

dynamical systems understood in a different theory.

1. A Moore machine is a dynamical system in a discrete and deterministic systems

theory.

2. A system of differential equations is a dynamical system in a differential systems

theory.

3. A Markov decision process is a dynamical system in a stochastic systems theory.
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In most cases, mathematicians have assumed that that the kinds of parameters

our systems take in never change — that our system will always interface with its

environment in the same way. However, this assumption is quite restrictive; after all,

I change the way I interface with my environment all the time. Every time I turn and

face a new direction, I open myself up to new inputs. There are variations on all of

the above systems theories which allow for the kinds of input to depend on what the

system is putting out, but for most of this book, we will work with systems theories

that pick a fixed sort of input.

The dynamical systems we will see in this book are open in the sense that they take in

inputs from their environment and expose outputs back to their environment. Because

of this, our systems can interact with eachother. One system can take what the other

system outputs as part of its input, and the other can take what the first outputs as part

of its input. For example, when we have a conversation, I take what I hear from you

and use it to change how I feel, and from those feelings I generate some speech which

I output to the world. You then take what I’ve said and do the same thing.

Jaz: Some wiring diagram of a conversation

We call this way of putting together dynamical systems to make more complex

systems composition.

Informal Definition 1.1.0.3. Composition is the process by which some things are

brought together to form bigger things.

Functions can be composed by plugging outputs into inputs, and dynamical systems

can be composed by plugging in the variables of the states of some into the parameters

of others.

This book is all about composing dynamical systems. Because of this, we will use

the abstract language of composition: category theory.

Informal Definition 1.1.0.4. Category theory is the abstract study of composition.

1.1.1 Category Theory

We’ll be using the language of category theory quite freely in this book, and so we’ll

expect you to know the basics. These are the notions in category theory that you should

look up if they are unfamiliar to you:

• What a category is.

• What an isomorphism is.

• What a functor is.

• What a natural transformation is.

• What a terminal and an initial object are.

• What a product and a coproduct are.
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• What a monad is, and it will help if you also know what a comonad is.

• What a monoidal category is.

Good introductions to category theory abound. One place to start is An invitation
to applied category theory [FS19]. Another is Notes on category theory [Per21]. For more

mathematically inclined readers, see [Rie17].

We will be using cartesian categories quite a bit in the first few chapters.

Definition 1.1.1.1. A category C is cartesian if every two objects 𝐴 and 𝐵 in C have a

product 𝐴 × 𝐵, and C has a terminal object 1. Equivalently, C is cartesian if for any

finite set 𝐼 and 𝐼-indexed family 𝐴(−) : 𝐼 → C of objects, there is a product

∏
𝑖∈𝐼 𝐴𝑖 in C.

A functor 𝐹 : C→ D between cartesian categories is said to be cartesian if it preserves

products and terminal objects, i.e. the map (𝐹𝜋𝐴 , 𝐹𝜋𝐵) : 𝐹(𝐴 × 𝐵) → 𝐹𝐴 × 𝐹𝐵 is an

isomorphism for all 𝐴 and 𝐵, and the terminal morphism 𝐹1→ 1 is an isomorphism.

We will also use some more advanced category theory, like indexed categories and

double categories. However, you don’t need to know them up front; we will introduce

these concepts as we use them.

While we’re at it, here’s some notation we’ll use repeatedly throughout the book.

The 𝑛th ordinal is denoted n. It is defined to be the set

n B {1, 2, . . . , 𝑛}.

So 0 is the empty set, 1 is a one-element set, etc. We will also use

𝐴 + 𝐵

to mean the disjoint union (or coproduct) of sets.

1.2 Deterministic and differential systems theories

In this chapter, we will see how to wire together dynamical systems of all different

sorts. First, however, we start with two exemplary systems theories:

1. First, systems which we will call (discrete-time) deterministic systems, which specify

exactly which state the system will transition into given its current state and input

parameters.

2. Second, systems which we will call differential systems, which do not specify a

“next state” but rather specify exactly how the state is tending to change in the

moment, given the current state and input parameters.
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1.2.1 Deterministic systems

A paradigmatic example of this sort of dynamical system is a clock.

1
2
3

4
567

8
9
10

11 12

Suppose that our clock has just an hour hand for now. Then we may collect all the

ways things can be for the clock into a set of hours:

Hour := {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

This set Hour is the set of states of our clock system.

If we know what hour it is, we also know what hour is coming next. So, this system

has the following dynamics:

tick : Hour→ Hour (1.1)

𝑡 ↦→
{
𝑡 + 1 if 𝑡 < 12

1 if 𝑡 = 12

By saying that the function tick is the dynamics for this system, what we mean is

that this function sends the current state of the system to the next state it will have.

Here’s a sample of the dynamics of the clock. Say we started at the 10 o’clock state:

10

tick↦−−→ 11

tick↦−−→ 12

tick↦−−→ 1

tick−−→ 2

tick↦−−→ · · ·

Ok, it’s not the most dynamic of systems, but we have to start somewhere. If we

want to refer to the whole system at once, we can box it up and draw it like this:

Clock Hour (1.2)

We imagine that the clock is going about its business inside the box, and that is shows

the hour it is currently displaying on the outgoing wire. This outgoing wire constitutes

the clock’s exposed variable, but we’ll explain that more later.

One issue with our clock is that it doesn’t tell us whether it is morning or evening.

Being morning or evening and going back and forth between them is another way that

things might be and change, and hence we can see it as its own two-state dynamical

system with states

a.m./p.m. = {a.m., p.m.}.
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However, rather than have this be an independent system, we want to consider it as

a little addition to our clock system, one that reads a.m. or p.m.:

1
2
3

4
567

8
9
10

11 12

a.m.
(1.3)

To connect the meridiem to the clock means that the way the meridiem changes should

be based on the hour:

next : a.m./p.m. × Hour→ a.m./p.m. (1.4)

(a.m., 𝑡) ↦→
{
p.m. if 𝑡 = 11

a.m. otherwise

(p.m., 𝑡) ↦→
{
a.m. if 𝑡 = 11

p.m. otherwise

If it is a.m. and the clock reads 8, then it will still be a.m. at the next tick; but if it is a.m.

and the clock reads 11, then the next tick will switch the meridiem to p.m..

Again, the thing to note about the dynamics of the a.m./p.m. system is that they

depend on what hour it is. The hour is imported as a parameter for the dynamics of the

meridiem system. We can draw the meridiem system as a box like this:

MeridiemHour a.m./p.m. (1.5)

We have the a.m./p.m. wire coming out, which carries the information of whether it is

a.m. or p.m., just like the clock. But we also have a wire coming in, which carries the

hour that we need as a parameter for our dynamics.

We can now express our whole clock (1.3) by wiring together our bare clock (1.2)

and the a.m./p.m. system:

Meridiem

Clock

ClockWithDisplay

a.m./p.m.

Hour

(1.6)
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We’ve put both our systems Meridiem and Clock into this bigger box with two

outgoing wires. We didn’t just dump these systems in the bigger box; we connected

them up to each other and the outgoing wires. The resulting system has states

HoursWithDisplay := Hour × a.m./p.m.

each of which is a pair, e.g. (11, a.m.), consisting of an hour and a meridiem reading.

They update in a combined way, by using the hour shown on the clock face as the

parameter we need for the Meridiem system; this is expressed by having a wire from

the output of Clock to the input of Meridiem. In full, the dynamics looks like this:

tick
′

: HoursWithDisplay→ HoursWithDisplay

(𝑡 , 𝑚) ↦→ (tick(𝑡), next(𝑡 , 𝑚))

where tick and next are as in (1.1) and (1.4).

Exercise 1.2.1.1. Convince yourself that the combined system really does behave like

the clock with a.m./p.m. display should. ♢

Now that we have a working clock, we can use it for systems that need to know the

time. For example, consider a diner that opens at 7a.m. and closes at 10p.m.. The states

of this diner are

DinerState = {open, closed}.
The diner’s dynamics are then

dinerDynamics : DinerState × HoursWithDisplay→ DinerState

(open, (10, p.m.)) ↦→ closed

(closed, (7, a.m.)) ↦→ open

(𝑠, (𝑡 , 𝑚)) ↦→ 𝑠 otherwise.

Again, we can represent the diner by this box:

Diner
a.m./p.m.

Hour
DinerState (1.7)

This time, we have two wires coming in, corresponding to the two parameters we need

for the diner system: the hour and the meridiem.

Assuming that the diner has a clock on its wall which it uses to decide whether to

open or close, the full diner system would be given by wiring the clock with display

into those input wires:

ClockWithDisplay Diner DinerState (1.8)
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If we want to, we can peak into the clock with display and see that it is itself made out

of a clock wired to a display:

Meridiem

Clock

ClockWithDisplay

Diner DinerState (1.9)

These examples are simple, but it doesn’t take much more to get to some truly

amazing phenomena. Consider this system: we have an infinite tape with a read-head

at some integer position. On this infinite tape, we will write the symbols 𝑎, 𝑏, 𝑐, or

𝑑, or we will leave it blank: _. Together, the state of the tape and the position of the

read-head have states pairs (T, 𝑛) consisting of a function T : Z→ {𝑎, 𝑏, 𝑐, 𝑑, _}, telling

us what symbol T(𝑖) is found at position 𝑖 of the tape, and a position 𝑛 of the read-head:

Symbol = {𝑎, 𝑏, 𝑐, 𝑑, _}
Tape = SymbolZ

Head = Z

The parameters that this system needs in order to change are a move-command and a

write-command. The move-command will be either move left or move right, encoded

as −1 or 1 respectively, and the write command will be one of the symbols that can be

written on the tape:

Move = {−1, 1} and Write = {𝑎, 𝑏, 𝑐, 𝑑, _}.

The way this system changes is by writing the write command to the tape at the

current position, and then moving according to the move command. As a function,

this is:

execute : Head × Tape ×Move ×Write→ Head × Tape

(𝑛, 𝑖 ↦→ T(𝑖), 𝑑, 𝑠) ↦→
(
𝑛 + 𝑑, 𝑖 ↦→

{
T(𝑖) if 𝑖 ≠ 𝑛

𝑠 if 𝑖 = 𝑛

)
.

We can imagine that the system exposes the tape and the symbol under its read

head. We can box this system up and draw it like so:

TapeMachine
Move

Write

Tape

Symbol
(1.10)
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Now, we need one more simple ingredient to get our system going; a mysterious

system of the form:

MysteryBox
Move

Write
Symbol (1.11)

We can see that our mystery box will take in a symbol and put out a move command

and a write command. The way our mystery box behaves is rather mysterious. It has

seven states 𝑆 = {1, 2, 3, 4, 5, 6, end}, and its update rule is given by the following table,

where the entry in the row 𝑖 and the column 𝑠 is written (𝑚, 𝑤) : 𝑠′ to express the move

command 𝑚, the write command 𝑤, and the next state 𝑠′ that our mysterious system

transitions to when input the symbol 𝑖 in state 𝑠:

1 2 3 4 5 6

a (-1, b):1 (1, a):1 (-1, b):3 (1, b):2 (-1, b):6 (-1, b):4

b (-1, a):1 (1, a):2 (-1, b):5 (1, a):4 (1, a):6 (1, a):5

c (1, d):2 (1, d):2 (-1, c):5 (1,d):4 (1, c):5 (1, a):1

d (-1, c):1 (1, a):5 (-1, c):3 (1,d):5 (-1, b):3 end

(1.12)

The end state always transitions to itself. Mysterious indeed. But when we wire the

two together, magic happens!

MysteryBox TapeMachine

UniversalTuringMachine

(1.13)

This is a universal Turing machine, i.e. when we encode everything into this strange

alphabet, it is capable of arbitrarily complex calculation!

Even simple systems can have very interesting behavior
when plugged in to the right environment.

That’s a lot of informal definitions, we are ready for something precise:

Definition 1.2.1.2. A deterministic system S, also written as(
updateS

exposeS

)
:

(
StateS

StateS

)
⇆

(
InS

OutS

)
,

consists of:

• a set StateS of states;
• a set OutS of values for exposed variables, or outputs for short;
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• a set InS of parameter values, or inputs for short;

• a function exposeS : StateS → OutS, the exposed variable of state or expose function,

which takes a state to the output it yields; and

• a function updateS : StateS × InS → StateS, the dynamics or update function which

takes a state and a parameter and gives the next state.

We refer to the pair

(
InS
OutS

)
of exposed variable and parameter values as the interface of

the system.

We can interpret this definition in any cartesian category C by taking StateS, OutS

and InS to be objects of C and updateS and exposeS to be maps in C; here, we have have

used the cartesian category Set of sets.

Remark 1.2.1.3. Deterministic systems are also known as Moore machines in the literature.

If the output set is taken to be {true, false}, then they are known as deterministic
automata.

Often, these definitions also include a start state 𝑠0 ∈ StateS as part of the data. We

don’t do this.

Example 1.2.1.4. The Clock system can be seen as a deterministic system with:(
tick

id

)
:

(
Hour

Hour

)
⇆

(
{∗}
Hour

)
.

In other words, it consists of

• State set StateClock = Hour = {1, 2, . . . , 12}.
• Output set OutClock = Hour.

• Input set InClock = {∗}, a one element set.

• Readout function exposeClock = idHour.

• update function updateClock : Hour × {∗} → Hour defined by updateClock(𝑡 , ∗) =
tick(𝑡).

Example 1.2.1.5. Not only is the term Moore machine is used for the mathematical notion

of deterministic system we’ve just presented, but it is also used for actual, real-life

circuits which are designed on that principle.

For example, suppose that a wire carries the signals Wire = {high, low}. We can see

a deterministic system M with input InM = Wire𝑛 and OutM = Wire𝑘 as a circuit with

𝑛 incoming wires and 𝑘 outgoing wires.
a

The state then describes the state of all the

internal wires (and capacitors, etc.) in the circuit. We would wire up these systems by

literally wiring them together.

Jaz: I would like to add an example of an implementation of a Moore machine into

a circuit.

a
Of course, the notion of “incoming” and “outgoing” wires are ways we think about the circuit in
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design terms. Circuits aren’t actually directed in this way. We’ll think about undirected notions of system

in Chapter 2.

Note that when we say that a system doesn’t have any parameters, as in Exam-

ple 1.2.1.4, we don’t take the parameter set to be empty but instead take it to have a

single dummy value {∗}, the one-element “hum of existence”. In other words, having

“no parameters” really means that the parameters are unchanging, or that there is no

way to change the value of the parameters.

Also, we are just exposing the whole state with the system in Example 1.2.1.4. There

is nothing preventing our systems from exposing their whole state (which means

StateS = OutS and exposeS = id), but often some aspects of the state are private, i.e. not

exposed for use by other systems.

Exercise 1.2.1.6. Write out the clock and meridiem systems from (1.1) and (1.4) in

terms of Definition 1.2.1.2. Really, this amounts to noticing which sets are the sets of

states, which are the sets of inputs, and what (implicitly) are the sets of outputs. ♢

Example 1.2.1.7 (SIR model). The set of states for a deterministic system doesn’t need

to be finite. The SIR model is an epimediological model used to study how a disease

spreads through a population. “SIR” stands for “susceptible”, “infected”, and, rather

ominously, “removed”. This model is usually presented as a system of differential

equations — what we will call a differential system — and we will see it in that form

in Example 1.2.2.5. But we can see a discrete approximation to this continuous model

as a deterministic system.

A state of the SIR model is a choice of how many people are susceptible, how many

are infected, and how many are removed. That is,

StateSIR =



𝑠

𝑖

𝑟


������� 𝑠, 𝑖, 𝑟 ∈ R

 � R
3.

is a 3-place vector of real numbers. We will again expose the whole state, so OutSIR =

StateSIR and exposeSIR = id.

The idea behind the SIR model is that if a susceptible person comes in contact with

an infected person, then they have a chance of becoming infected too. And, eventually,

infected persons will be removed from the model, either by recovering (a gentler way

to read the “R”) or by dying. So we need two parameters: the rate 𝑎 of infection and

the rate 𝑏 of removal:

InSIR =

{[
𝑎

𝑏

] ����� 𝑎, 𝑏 ∈ R
}
= R2.

Now, we can show how a population will develop according to this model by
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defining the update function:

updateSIR : StateSIR × InSIR → StateSIR (1.14)

©­­«

𝑠

𝑖

𝑟

 ,
[
𝑎

𝑏

]ª®®¬ ↦→


𝑠 − 𝑎𝑠𝑖
𝑖 + 𝑎𝑠𝑖 − 𝑏𝑖
𝑟 + 𝑏𝑖

 (1.15)

Example 1.2.1.8. If a deterministic system has a small finite set of states, then we can

draw it entirely as a transition diagram:

1

𝑎
2

𝑏

3

𝑏

Note that every node has an orange and a green arrow emanating from it, but that

there are no rules on how many arrows point to it.

This diagram describes the following system S:(
updateS

exposeS

)
:

(
{1, 2, 3}
{1, 2, 3}

)
⇆

(
{green, orange}

{𝑎, 𝑏}

)
.

That is, we have

• StateS = {1, 2, 3}.
• InS = {green, orange},
• OutS = {𝑎, 𝑏},
•

exposeS : StateS → OutS

1 ↦→ 𝑎

2 ↦→ 𝑏

3 ↦→ 𝑏

updateS : StateS × InS → InS

(1, green) ↦→ 2

(1, orange) ↦→ 1

(2, green) ↦→ 3

(2, orange) ↦→ 1

(3, green) ↦→ 3

(3, orange) ↦→ 1

To draw a transition diagram of a system S, we draw each state 𝑠 ∈ StateS as a bubble

filled with the label exposeS(𝑠), and for each parameter 𝑖 ∈ InS we draw an arrow from

𝑠 to updateS(𝑠, 𝑖) and label it by 𝑖. For a diagram like this to be a transition diagram,

every node must have exactly one edge leaving it for each parameter.
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Exercise 1.2.1.9. Draw the Clock system (Example 1.2.1.4) as a transition diagram. ♢

Example 1.2.1.10 (Deterministic Finite Automata). A deterministic finite automaton (DFA)

is a simple model of computation. Given our definition of deterministic system, DFAs

are easy enough to define: they are just the deterministic systems with finitely many

states whose output values are either accept or reject.

This means that the exposed variable of state exposeS : StateS → {accept, reject}
is a boolean valued function. We say a state 𝑠 is an accept state if exposeS(𝑠) = accept,

and a reject state if exposeS(𝑠) = reject.

The idea is that a DFA is a question answering machine. Given a starting state

𝑠0 and a sequence of input values 𝑖1 , . . . , 𝑖𝑛 , we get a sequence of states by 𝑠𝑡+1 :=

updateS(𝑠𝑡 , 𝑖𝑡). The answer to the question is “yes” if 𝑠𝑛 is an accept state, and “no” if

𝑠𝑛 is a reject state.

There is an important special case of deterministic systems which appear very

commonly in the literature: the closed systems. These are the systems which have no

parameters, and which expose no variables. They are closed off from their environment,

and can’t be wired into any other systems.

As mentioned after Example 1.2.1.4, when we say “no” in this way — no parameters,

no variables — we should be careful with what we mean exactly. We mean that there

is no variation in the parameters or variables, that they are trivial. That is, we make the

following definition.

Definition 1.2.1.11. We say that a deterministic system S as “no inputs” if InS has a

single element, and has “no outputs” if OutS has a single element. We say that S is

closed if it has no inputs and no outputs: both InS and OutS have only one element

InS � {∗} � OutS.

Exercise 1.2.1.12. Show that to give a closed system(
updateS

exposeS

)
:

(
StateS

StateS

)
⇆

(
{∗}
{∗}

)
,

one just needs to choose a set StateS and an update function updateS : StateS → StateS.

♢

Given that we are mostly interested in how systems wire together, it may seem

strange to draw attention to the closed systems that can’t be wired into anything else.

But we will often end up with a closed system as the result of wiring together some

systems.
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For example, suppose we have an Agent acting within a Environment. The agent

will take an action, and the evironment will respond to that action. Depending on

the action taken and response given, the agent and the environment will update their

states. We can model this by the following wiring diagram:

Agent Environment

Closed Agent/Environment Model

To model this as a closed system is to think — or pretend — that the our model of

the Agent and the Environment includes all possible external parameters, that it is well

isolated from its own environment.

Exercise 1.2.1.13. What would happen to a system S if its set of parameters or output

values were actually empty sets? Let’s find out.

1. Suppose InS = ∅. Explain the content of a deterministic system(
updateS

exposeS

)
:

(
StateS

StateS

)
⇆

(
∅
{∗}

)
.

2. Suppose OutS = ∅. Explain the content of a deterministic system(
updateS

exposeS

)
:

(
StateS

StateS

)
⇆

(
{∗}
∅

)
. ♢

1.2.2 Differential systems

La nature ne fait jamais des sauts - Leibniz

A quirk of modeling dynamical systems as deterministic systems is that determin-

istic systems lurch from one state to the next. In life, there are no next moments. Time,

at least at human scales and to a first approximation, flows continuously.

Instead of modelling the “next” state a system will be in, we can model how the system
is tending to change, in the moment. In order to do this, we need to make concession in

the way we model the states of our system: we must assume they form a continuum

themselves.

For example, suppose we are studying a population of Rabbits. We can measure

the rate at which rabbits are born, and the rate they die. Then the population changes

according to these rates. We can express this dependency of the change in population
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on certain rates with a differential equation:

𝑑𝑟

𝑑𝑡
= bRabbits · 𝑟 − dRabbits · 𝑟

where 𝑟 ∈ R is the population of rabbits (considered as a real number for convenience),

and the rates bRabbits and dRabbits. The state of our system of Rabbits is the current

population of rabbits, so StateRabbits = R, while we take the birth and death rates as

parameters, so that InRabbits = R×R. Accordingly, we can box the rabbit system up like

so:

Rabbits
R

R
R (1.16)

Now, rabbits are prey; they are eaten by other animals. That means that the rate at

which rabbits die will depend on how often they are being eaten, and how often they

are being eaten will depend on how many predators there are out there.

The population of any predator will also change according to a birth rate and

death rate. Suppose we have a similarly defined system of Foxes whose population is

governed by the differential equation

𝑑𝑓

𝑑𝑡
= bFoxes · 𝑓 − dFoxes · 𝑓 .

We can box up this system like so:

Foxes
R

R
R (1.17)

Now, we want the death rate of rabbits to depend on the number of foxes. But we

also need the birth rate of the foxes to depend on the number of rabbits; after all, if a

fox has nothing to eat, it has no energy for hanky-panky. So we will add the following

system of equations to the mix: {
drabbits = 𝑐1 𝑓

bFoxes = 𝑐2𝑟

Making these substitutions, we get the following system of differential equations:{
𝑑𝑟
𝑑𝑡

= bRabbits · 𝑟 − 𝑐1 𝑓 𝑟
𝑑𝑓

𝑑𝑡
= 𝑐2𝑟 𝑓 − dFoxes · 𝑓
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We are setting the parameters of the systems of Rabbits and Foxes according to the

states of the other system. That is, we are wiring up the systems of Rabbits and Foxes:

Rabbits

Foxes
𝑐2

𝑐1

(1.18)

The resulting system is called the Lotka-Volterra predator-prey model, and it is a simple

differential model of the ways that the population of a predator species depends on

the population of a prey species, and vice-versa.

Where before our boxes were filled with deterministic systems, now they are filled

with systems of (first order, ordinary) differential equations. We call these differential
systems.

Definition 1.2.2.1. A (first order, ordinary) differential system S with 𝑛 state variables, 𝑚

parameters, and 𝑘 exposed variables(
updateS

exposeS

)
:

(
R𝑛

R𝑛

)
⇆

(
R𝑚

R𝑘

)
consists of:

• An 𝑛-dimensional state space StateS = R𝑛 .

• An 𝑚-dimensional parameter space InS = R𝑚 .

• A 𝑘-dimensional space of exposed variable values OutS = R𝑘 .

• A smooth function updateS : R𝑛×R𝑚 → R𝑛 — or equivalently 𝑛 smooth functions

updateS𝑘 : R𝑛 × R𝑚 → R— which gives us the derivative of each state variable

at each time, so that the defining system of differential equations of S reads
𝑑𝑠1
𝑑𝑡

= updateS1
(𝑠, 𝑖)

...

𝑑𝑠𝑛
𝑑𝑡

= updateS𝑛(𝑠, 𝑖).

• 𝑘 exposed variables exposeS 𝑖 : R𝑛 → R, which organize into a single smooth

function exposeS : R𝑛 → R𝑘 .

Remark 1.2.2.2. Definition 1.2.2.1 looks remarkably similar to Definition 1.2.1.2. As we

mentioned, Definition 1.2.1.2 can be interpreted in any cartesian category, including

the category Euc of Euclidean spaces and smooth maps (Definition 1.2.2.7). It appears

that a differential system is the same thing as a deterministic system in the cartesian

category Euc. But while the R𝑛s occuring in updateS : R𝑛 × R𝑚 → R𝑛 look the same,
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they are in fact playing very different roles. The R𝑛 on the left is playing the role of the

state space, while the R𝑛 on the right is playing the role of the tangent space at 𝑠 for

some state 𝑠 ∈ R𝑛 . The difference will be felt in Chapter 3 when we study behaviors

of systems: the way a trajectory is defined is different for differential systems and

deterministic systems. For differential systems, a trajectory will be a solution to the

system of differential equations, that is, a function 𝑠 : R→ R𝑛 which satisfies

𝑑𝑠

𝑑𝑡
(𝑡) = updateS(𝑠(𝑡), 𝑖(𝑡)).

for all choice of times 𝑡, while for a deterministic system a trajectory would be a

sequence 𝑠 𝑗 of states so that 𝑠 𝑗+1 = updateS(𝑠 𝑗 , 𝑖 𝑗).
We will see precisely how this difference is made manifest in the formal definition

of a systems theory as the choice of section in Section 3.5.

Remark 1.2.2.3. There are other theories of differential systems that one can define (for

example, allowing the state space to be a manifold), but in this book we will work with

this simpler systems theory.

Example 1.2.2.4. The system of Rabbits has 1 state variable (the population of rabbits), 2

parameters (the birth and death rates of the rabbits), and 1 exposed variable. It exposes

its whole state, so that exposeS = id, and its update is given by

updateRabbits(𝑟, (bRabbits , dRabbits)) = bRabbits · 𝑟 − dRabbits · 𝑟.

The whole Lotka-Voltera model of Eq. (1.18) has 2 state variables (the populations

of rabbits and of foxes), 2 parameters (the birth rate of rabbits and the death rate of

foxes), and 2 exposed variables. It exposes its whole state, and its update is given by

updateLK

([
𝑟

𝑓

]
, (bRabbits , dFoxes)

)
=

[
bRabbits · 𝑟 − 𝑐1𝑟 𝑓

𝑐2 𝑓 𝑟 − dFoxes · 𝑓

]
One might wonder why we said this system has 2 parameters when there are also the

rate constants 𝑐1 and 𝑐2 involved — aren’t they also parameters? We chose them to

be constant, where our parameters might vary over time. We could have made them

parameters instead — it was an arbitrary choice in how to make the model.

Example 1.2.2.5. The most basic epidemiological model is the SIR model. We saw the

discrete version of this model in Example 1.2.1.7. Here, let’s see the differential version.

The SIR equations model the spread of disease through a population. People are ei-

ther susceptible (S), infected (I), recovered or more ominously removed (R) from the model.

When a susceptible person comes in contact with an infected person, they have a

chance to become infected; this means that the population of susceptible people tends

downwards in proportion to the number of susceptible and the number of infected
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people, and the population of infected people tends up by the same amount. On the

other hand, infected people will eventually be removed from the model, either by re-

covering or dying; this means that the population of infected people tends downwards

proportional to the current infected population, while the removed population tends

upwards by the same amount. Said as a system of differential equations, this means:
𝑑𝑆
𝑑𝑡

= −𝛼𝑆𝐼
𝑑𝐼
𝑑𝑡

= 𝛼𝑆𝐼 − 𝛽𝐼
𝑑𝑅
𝑑𝑡

= 𝛽𝐼

(1.19)

The SIR model is a differential system with 3 state variables (𝑆, 𝐼, and 𝑅) and 2

parameters (𝛼 and 𝛽). We will suppose that it exposes its whole state: exposeSIR = id.

The update is given by

updateSIR

©­­«

𝑆

𝐼

𝑅

 , (𝛼, 𝛽)
ª®®¬ =


−𝛼𝑆𝐼

𝛼𝑆𝐼 − 𝛽𝐼

𝛽𝐼

 .
In order to model higher order systems of ordinary differential equations, we will

resort to the standard trick of encoding them as larger systems of first order systems. For

example, to encode a second order differential equation in 𝑛 variables, we would set the

state space to beR2𝑛
with state variables (𝑠, ¤𝑠) (the first 𝑛 being 𝑠, the second 𝑛 being ¤𝑠).

We think of 𝑠 as the actual state variable, and ¤𝑠 as its formal derivative. We can make this

formal derivative an actual derivative by adding the equations updateS𝑘((𝑠, ¤𝑠), 𝑖) B ¤𝑠
for 1 ≤ 𝑘 ≤ 𝑛 to the system

𝑑¤𝑠
𝑑𝑡

= updateS𝑘((𝑠, ¤𝑠), 𝑖) for 𝑛 + 1 ≤ 𝑘 ≤ 2𝑛 of second order

differential equations we were trying to model.

Often, we want to think of the state variables ¤𝑠 as hidden technical tricks. For this

reason, we will often only expose the “actual” state variables 𝑠. This is one use for the

function exposeS.

Example 1.2.2.6. Consider a mass 𝑚 on a spring with a spring constant of 𝑐, taking

position 𝑠(𝑡) at time 𝑡. Newton’s second law then says that the acceleration of the mass

is proportional to the force exerted upon it:

𝑚
𝑑2𝑠

𝑑𝑡
= −𝑐𝑠. (1.20)

We can express this as a differential system in the following way. We take the state

variables to be 𝑠 and ¤𝑠: StateSpring B R2
. We will suppose that the mass and the spring

constant are constant, so that this system takes no parameters: InSpring B R0 = {∗}.
We will only expose the position of the spring, and not its velocity: OutSpring B R and



1.3. WIRING TOGETHER SYSTEMS WITH LENSES 19

exposeSpring(𝑠, ¤𝑠) B 𝑠. Finally, the dynamics of the system are given by:

updateSpring

([
𝑠

¤𝑠

])
B

[
¤𝑠
− 𝑐𝑠𝑚

]
.

This is a way of re-writing Eq. (1.20) as a system of first order differential equations:{
𝑑𝑠
𝑑𝑡

= ¤𝑠
𝑑¤𝑠
𝑑𝑡

= − 𝑐𝑠𝑚

Before we go on, we should clarify the category that we are working in when we

work with our differential systems.

Definition 1.2.2.7. The category Euc is the category of Euclidean spaces and smooth

maps between them. The objects of Euc are R𝑛 for all 𝑛 ∈ N, and a morphism

𝑓 : R𝑛 → R𝑚 is a smooth map.

We note that Euc is a cartesian category with R𝑛 × R𝑚 = R𝑛+𝑚 and 1 = R0
.

1.3 Wiring together systems with lenses

In the last section, we saw the formal definition of deterministic and differential systems

and a few examples of them. In this section, we’ll see how to wire systems together — as

we did in Section 1.1 for the clock and the universal Turing machine, and in Section 1.2.2

for the Lotka-Volterra predator prey model — to make more complex systems. We will

do this using an interesting notion coming from the world of functional programming:

a lens.

1.3.1 Lenses and lens composition

A lens is a framework for bi-directional information passing. We will see that lenses

are a common generalization of systems and of wiring diagrams.

Definition 1.3.1.1. A lens (
𝑓 ♯

𝑓

)
:

(
𝐴−

𝐴+

)
⇆

(
𝐵−

𝐵+

)
in a cartesian category C consists of:

• A passforward map 𝑓 : 𝐴+ → 𝐵+, and

• a passback map 𝑓 ♯ : 𝐴+ × 𝐵− → 𝐴−.

We think of the passforward 𝑓 : 𝐴+ → 𝐵+ as sending information “downstream”,

while the passback 𝑓 ♯ : 𝐴+ × 𝐵− → 𝐴− sends information back “upstream”. But the

passback is allowed to use the value in 𝐴+ which is about to flow downstream to

calculate how to pass information back upstream.
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The most useful thing about lenses is that they compose.

Definition 1.3.1.2. Let

(
𝑓 ♯

𝑓

)
:

(
𝐴−

𝐴+

)
⇆

(
𝐵−

𝐵+

)
and

(
𝑔♯

𝑔

)
:

(
𝐵−

𝐵+

)
⇆

(
𝐶−

𝐶+

)
be lenses in a

cartesian category C. We define their composite(
𝑔♯

𝑔

)
◦

(
𝑓 ♯

𝑓

)
to have passforward 𝑔 ◦ 𝑓 and passback

(𝑎+ , 𝑐−) ↦→ 𝑓 ♯
(
𝑎+ , 𝑔♯( 𝑓 (𝑎+), 𝑐−)

)
.

Here’s a picture so that you can see the information flow for the composite of lenses:2

𝑓 𝑔𝐴+ 𝐶+
𝐵+

𝐴+ 𝑓

𝑔♯

𝐵+ 𝑓 ♯

𝐵−𝐶−

𝐴− (1.21)

Remark 1.3.1.3. Even though our definition of lens was given in an arbitrary cartesian

category C, we felt comfortable defining it in terms of elements. Going forward, we

will also reason with it using elements. This trick works for any cartesian category

by using “generalized elements”. We interpret an “element” 𝑥 in an object 𝑋 as a

map 𝑥 : 𝑍 → 𝑋. If we do work with 𝑥 to get a new element 𝑓 (𝑥) of 𝑌, then by the

Yoneda lemma there is a map 𝑓 : 𝑋 → 𝑌 in the category which does that work by

post-composition: 𝑓 (𝑥) = 𝑓 ◦ 𝑥. At least, so long as that work we do is natural in 𝑥,

which means that it could be done just as well if we substituted 𝑥 for anything else.

The take-away is that even in a totally arbitrary cartesian category whose objects are

not sets of any kind, we can still reason about them as if they were — at least when it

comes to pairing elements and applying functions.

This gives us a category of lenses in any cartesian category C.

Definition 1.3.1.4. Let C be a cartesian category. Then the category LensC has:

• as objects, the pairs

(
𝐴−

𝐴+

)
of objects in C, which we will call arenas.

• as morphisms, the lenses

(
𝑓 ♯

𝑓

)
:

(
𝐴−

𝐴+

)
⇆

(
𝐵−

𝐵+

)
.

• The identity lens is

(
𝜋2

id

)
:

(
𝐴−

𝐴+

)
⇆

(
𝐴−

𝐴+

)
, where 𝜋2 : 𝐴+ × 𝐴− → 𝐴− is the

projection.

Composition is given by lens composition as in Definition 1.3.1.2.

2
We draw this with a different style—green boxes, etc.—so that the reader will not confuse it with

our usual wiring diagrams for systems. These are not dynamic in any way; every wire is a set and every

bead on that wire is a function.
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Remark 1.3.1.5. The category of lenses is special among categories because it is named

for its maps (which are the lenses), rather than its objects (which are the arenas).

This is because we will later meet another category, the category of charts (See Defini-

tion 3.3.0.13), whose objects are the arenas but whose maps are not lenses. Finally, in

Definition 3.4.1.1 we will meet a double category3 ArenaC which combines these two cat-

egories whose objects are arenas and which is named after its objects. In Section 3.4.1,

we will explain the name “arena” and its role in the theory of dynamical systems.

Exercise 1.3.1.6.
1. Draw the composite of two lenses in the style of (1.21) — that is, with the sets as

wires and the functions as beads on those wires.

2. Check that LensC is actually a category. That is, check that lens composition is

associative, and that the identity lens is an identity for it. (Hint: You can use your

drawing for this. You can slide the function beads around on the strings; if you

pull a function bead past a split in the string, you have to duplicate it (since that

split represents the duplication function).) ♢

Like any good categorical construction, LensC varies functorially in its variable

cartesian category C.

Proposition 1.3.1.7 (Functoriality of Lens). Every cartesian functor 𝐹 : C→ D induces

a functor

(
𝐹
𝐹

)
: LensC → LensD given by(

𝐹

𝐹

) (
𝑓 ♯

𝑓

)
=

(
𝐹 𝑓 ♯ ◦ 𝜇−1

𝐹 𝑓

)
where 𝜇 = (𝐹𝜋1 , 𝐹𝜋2) : 𝐹(𝑋 × 𝑌) ∼−→ 𝐹𝑋 × 𝐹𝑌 is the isomorphism witnessing that 𝐹

preserves products.

Proof Sketch. Because lenses are defined just using the cartesian product, and 𝐹 pre-

serves these products, it commutes with everything in sight. □

Exercise 1.3.1.8.
1. What does the functor

(
𝐹
𝐹

)
: LensC → LensD do on objects?

2. Complete the proof of Proposition 1.3.1.7, by showing that

(
𝐹
𝐹

)
really is a functor.

♢

3
A double category is like a category with two different kinds of morphisms and a way for them to

commute. See Definition 3.4.0.1 for the precise definition and the accompanying discussion.
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1.3.2 Deterministic and differential systems as lenses

The reason we are interested in lenses and lens composition is because dynamical

systems of various sorts are themselves lenses. As written in Definition 1.2.1.2, a

system S is a lens in the category of sets of the form(
updateS

exposeS

)
:

(
StateS

StateS

)
⇆

(
InS

OutS

)
.

In fact, the deterministic systems are precisely the lenses whose input arena is of the

form

(
𝑆
𝑆

)
. This means that we can compose a system Swith a lens

(
𝑓 ♯

𝑓

)
:

(
InS
OutS

)
⇆

(
𝐼
𝑂

)
to get a new dynamical system(

updateS

exposeS

)
#

(
𝑓 ♯

𝑓

)
:

(
StateS

StateS

)
⇆

(
𝐼

𝑂

)
with a new interface! We will see that wiring diagrams are a special sort of lenses too

in the upcoming Section 1.3.3, so that wiring together systems will be an instance of

lens composition.

Similarly, a differential system is a lens in the category Euc (Definition 1.2.2.7) of the

form (
updateS

exposeS

)
:

(
R𝑛

R𝑛

)
⇆

(
R𝑚

R𝑘

)
.

We can then compose this with lenses in Euc to get new differential systems!

We can use this observation to wire together different systems. We separate this

into two phases: first we put two systems in parallel, then we wire them together using

a lens. It’s far from obvious that wiring diagrams are lenses, but we’ll see precisely

how they are in Section 1.3.3 and describe the second phase there.

The first phase — combine two systems without having them interact — is achieved

through what we call the parallel product and denote ⊗. To put two arenas

(
𝐴1

𝐵1

)
and(

𝐴2

𝐵2

)
in parallel we just take their product in our cartesian category C:(

𝐴1

𝐵1

)
⊗

(
𝐴2

𝐵2

)
B

(
𝐴1 × 𝐴2

𝐵1 × 𝐵2

)
In Definition 1.3.2.1 we define parallel product for morphisms in Lens, i.e. for general

lenses.

Definition 1.3.2.1. For lenses

(
𝑓 ♯

𝑓

)
:

(
𝐴1

𝐵2

)
⇆

(
𝐶1

𝐷1

)
and

(
𝑔♯

𝑔

)
:

(
𝐴2

𝐵2

)
⇆

(
𝐶2

𝐷2

)
, we define

their parallel product (
𝑓 ♯

𝑓

)
⊗

(
𝑔♯

𝑔

)
:

(
𝐴1 × 𝐴2

𝐵1 × 𝐵2

)
⇆

(
𝐶1 × 𝐶2

𝐷1 × 𝐷2

)
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to have passforward 𝑓 × 𝑔 and passback

((𝑏1 , 𝑏2), (𝑐1 , 𝑐2)) ↦→ ( 𝑓 ♯(𝑏1 , 𝑐1), 𝑔♯(𝑏2 , 𝑐2)).

In terms of morphisms, this is

(𝐵1 × 𝐵2) × (𝐶1 × 𝐶2)
∼−→ (𝐵1 × 𝐶1) × (𝐵2 × 𝐶2)

𝑓 ♯×𝑔♯
−−−−→ 𝐴1 × 𝐴2.

Together with

(
1
1

)
, this gives LensC the structure of a monoidal category.

Remark 1.3.2.2. We will show a slick way to prove that the parallel product does indeed

make LensC into a monoidal category in Section 4.3.

Exercise 1.3.2.3. Show the parallel product of morphisms as in Definition 1.3.2.1 using

the string diagram notation from (1.21). ♢

Proposition 1.3.2.4. Let 𝐹 : C → D be a cartesian functor. The induced functor(
𝐹
𝐹

)
: LensC → LensD is strong monoidal with respect to the parallel product — it

preserves the monoidal product ⊗.

Proof. Since 𝐹 preserves products, we have that

𝐹

((
𝐴−

𝐴+

)
⊗

(
𝐵−

𝐵+

))
= 𝐹

(
𝐴− × 𝐵−

𝐴+ × 𝐵+

)
=

(
𝐹(𝐴− × 𝐵−)
𝐹(𝐴+ × 𝐵+)

)
�

(
𝐹𝐴− × 𝐹𝐵−

𝐹𝐴+ × 𝐹𝐵+

)
= 𝐹

(
𝐴−

𝐴+

)
⊗ 𝐹

(
𝐵−

𝐵+

)
.

□

Given two dynamical systems S1 and S2, their parallel product S1 ⊗ S2 is defined

explicitly as follows:

• StateS1⊗S2 := StateS1 × StateS2 .
• OutS1⊗S2 := OutS1 × OutS2 .
• InS1⊗S2 := InS1 × InS2 .
• exposeS1⊗S2((𝑠1 , 𝑠2)) = (exposeS1

(𝑠1), exposeS2
(𝑠2)).

• updateS1⊗S2((𝑠1 , 𝑠2), (𝑖1 , 𝑖2)) = (updateS1
(𝑠1 , 𝑖1), updateS2

(𝑠2 , 𝑖2)).
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This can be expressed as the following wiring diagram:

S1

S2

S1 ⊗ S2

(1.22)

If we imagine physically wiring together our boxes, the first thing we would need

to do is collect them together like this; then we can proceed to wire them. We will do

exactly this with our systems: first we will take their parallel product, and then we

compose it with a lens that represents the wiring diagram.

Example 1.3.2.5. We can describe the ClockWithDisplay system (reproduced below) as a

composite of lenses.

Meridiem

Clock

ClockWithDisplay

a.m./p.m.

Hour

(1.23)

First, we take the parallel product of Meridiem and Clock (see Exercise 1.2.1.6) to get

the system

Meridiem ⊗ Clock :

(
a.m./p.m. × Hour
a.m./p.m. × Hour

)
⇆

(
1 × Hour

a.m./p.m. × Hour

)
.

Now, we will express the wiring pattern in Eq. (1.23) as a lens(
𝑤♯

𝑤

)
:

(
1 × Hour

a.m./p.m. × Hour

)
⇆

(
1

a.m./p.m. × Hour

)
.

We do this by setting

𝑤(𝑚, ℎ) := (𝑚, ℎ), and

𝑤♯((𝑚, ℎ), ∗) := (∗, ℎ).
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Seen as a wiring diagram on its own,

(
𝑤♯

𝑤

)
looks like this:

(
𝑤♯

𝑤

)
a.m./p.m.

Hour
(1.24)

We can then see that

ClockWithDisplay =

(
𝑤♯

𝑤

)
◦ (Meridiem ⊗ Clock)

just like we wanted! In terms of wiring diagrams, this looks like:

Meridiem

Clock

ClockWithDisplay

a.m./p.m.

Hour

=

Meridiem

Clock

Meridiem ⊗ Clock(
𝑤♯

𝑤

)

a.m./p.m.

Hour
(1.25)

Example 1.3.2.6. We can describe the Lotka-Volterra predator prey model (reproduced

below) as a composite of lenses.

Rabbits

Foxes
𝑐2

𝑐1

(1.26)
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We can express the wiring pattern in Eq. (1.26) as a lens(
𝑤♯

𝑤

)
:

(
R2

R

)
⊗

(
R2

R

)
⇆

(
R2

R2

)
.

We do this by setting

𝑤(𝑟, 𝑓 ) B (𝑟, 𝑓 )
𝑤♯((𝑟, 𝑓 ), (𝑎, 𝑏)) B (𝑎, 𝑐2 𝑓 , 𝑐1𝑟, 𝑏)

We can draw

(
𝑤♯

𝑤

)
as a wiring diagram on its own like this:

𝑐2

𝑐1

(1.27)

Filling those boxes with the systems of Rabbits and Foxes corresponds to taking the

composite

(Rabbits ⊗ Foxes) #
(
𝑤♯

𝑤

)
of lenses.

Wiring together transition diagrams. When a deterministic system is presented as a

transition diagram (See Example 1.2.1.8), its dynamics are given by reading the input

and following the arrow with that label, and then outputting the label on the resulting

node. When we wire together systems presented as transition diagrams, the dynamics

then involve reading the input labels of all inner systems, moving along all the arrows

with those labels, and then outputing the labels at each state, possible into the input of

another system.

Exercise 1.3.2.7. Here are two systems, S1 and S2 presented in terms of transition

diagrams. The task is calculate the transition diagram of a system made by wiring

them together.

First, let Colors = {red, blue, green} and let Bool = {true, false}. Here is our first

system S1, which has interface

(
Bool
Colors

)
:
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S1 B

blue red

blue green

false

true

true

true

false

false

false

true

(1.28)

Our second system S2 will have interface

(
Colors
Bool

)
:

S2 B

true false

true

(1.29)

1. Write down the transition diagram of the system obtained by connecting the

above systems according to the following wiring diagram:

S B S1 S2

2. Explain how to understand the dynamics of this S in terms of the component

systems S1 and S2. ♢

Multi-city SIR models In Examples 1.2.1.7 and 1.2.2.5, we saw deterministic and dif-

ferential SIR models. Each models the spread of a disease through a single population.

But what about a global pandemic where the disease is spreading through many local

populations?

To model the spread of a disease through many different populations, we can use

what is called a multi-city SIR model. We call each population a “city”, and for now we

will take flow of population between each city to be known constants. We can define a

city as a differential system; then certain wiring diagrams of cities will correspond to

multi-city models!
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Definition 1.3.2.8. A City in a multi-city SIR model is a differential system

City R3
R3

R3

(1.30)

A city is defined by:

• StateCity B



𝑆

𝐼

𝑅


������� 𝑆, 𝐼, 𝑅 ∈ R

 = R3
.

• InCity = {(inflow, outflow) | inflow, outflow ∈ R3} = R3 × R3

• OutCity = StateCity = R3
.

• exposeS = id.

•

updateS

©­­«

𝑆

𝐼

𝑅

 , (inflow, outflow)
ª®®¬ B


−𝑘1𝑆𝐼 + inflow1 − outflow1

𝑘1𝑆𝐼 − 𝑘2𝐼 + inflow2 − outflow2

𝑘1𝐼 + inflow3 − outflow3


for some choice of constants 𝑘1 and 𝑘2.

That is, each city will run its own SIR model, and each of the three populations can

flow between cities.

Now, to define a multi-city SIR model, we need to know what cities we are dealing

with and how population flows between them. We’ll call this a population flow graph.

Definition 1.3.2.9. A population-flow graph (for a multi-city SIR model) is a graph whose

nodes are labeled by cities and whose edges City
1
→ City

2
are labeled by 3 × 3 real

diagonal matrices Flow1→2 of the following form:
𝑟𝑆 0 0

0 𝑟𝐼 0

0 0 𝑟𝑅

 .
Example 1.3.2.10. Let’s take a minute to understand Definition 1.3.2.9. Here is an

example of a network of cities, represented in a graph:

Boston NYC

Tallahassee
(1.31)

This map contains three cities, Boston, NYC, and Tallahassee. As we can see, Boston

and NYC have restricted access to travellers from Tallahassee, but otherwise people can
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travel freely. Let’s focus in on one of these ways to travel, say Boston → NYC. This is

associated to a matrix

FlowBoston→NYC B


𝑟𝑆 0 0

0 𝑟𝐼 0

0 0 𝑟𝑅

 .
per the definition of a population flow graph. Here’s how to understand this matrix.

If the current population of Boston (split into susceptible, infected, and removed) is

𝑠 =


𝑆

𝐼

𝑅

 , then

FlowBoston→NYC 𝑠 =


𝑟𝑆 0 0

0 𝑟𝐼 0

0 0 𝑟𝑅



𝑆

𝐼

𝑅

 =


𝑟𝑆𝑆

𝑟𝐼 𝐼

𝑟𝑅𝑅


is the population that will leave Boston and arrive in NYC. Of course, this assumes

that people do not become sick in transit, a temporary assumption that a more robust

model would have to address.

Given a population flow graph, we can form a multi-city SIR model by wiring

together the cities in a particular way. Namely, to every city we will first add sums

to its inputs for every city it is flowing to and every that flows to it. That is, we will

prepare each city like so:

City

+

+

.

.

.

.

.

.

.

.

.
(1.32)

Specifically, we need to add together all the inflows from all other cities, and then

record all the outflows to all other cities. We also need to copy the state enough times

so that it can be passed to all other cities that our city flows to. So we need to add

together inputs for all incoming edges in the population flow graph to the inflow port,

and add together inputs for all outgoing edges in the population flow graph to the

outflow port. And we also need to copy the output port to for all outgoing edges.
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Example 1.3.2.11. For example, here is the preparation necessary forBoston in Eq. (1.31):

Boston

+

As you can see, there is only one incoming edge, and so the inflow input port doesn’t

need to anything to be added. But there are two outgoing edges, so we need to copy

the output so they can be passed to NYC and Tallahassee and add together the two

outflows into the outflow input port of Boston.

Exercise 1.3.2.12. Prepare the cities of NYC and Tallahassee from Eq. (1.31) in the same

way Boston was prepared in Example 1.3.2.11. ♢

Next, we wire together these prepared cities (from Eq. (1.32)). For each edgeCity
1
→

City
2

in our population flow graph, we will put the matrix FlowCity
1
→City

2

on the wire

leaving the prepared City
1

corresponding to the edge, then split the wire and plug one

end into the corresponding outflow input port of City
1

and the corresponding inflow

input port of City
2
.

Example 1.3.2.13. Here is what it looks like to wire Boston to NYC along the edge
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Boston→ NYC in the population flow graph Eq. (1.31):

Boston

NYC

Flow

+

+

(1.33)

This wiring diagram says to take the population of Boston, take the proportion given

by the flow rate FlowBoston→NYC, then set add this to the outflow parameter of Boston

and the inflow parameter of NYC.

1.3.3 Wiring diagrams as lenses in categories of arities

We have been drawing a bunch of wiring diagrams so far, and we will continue to do

so throughout the rest of the book. Its about time we explicitly described the rules one

uses to draw these diagrams, and give a formal mathematical definition of them. The

motto of this section is:

A wiring diagram is a lens in a free cartesian category — a category of arities.

We’ll begin by describing wiring diagrams and their category in informal terms.

Then, we will see how diagrams relate to lenses in a particular category — which we

call the category of arities — and finally give a formal definition of the category of

wiring diagrams.

Informal Definition 1.3.3.1. A wiring diagram is a diagram which consists of a number

of inner boxes, each with some input ports and some output ports, that are wired together

inside an outer box, which also has input and output ports. This gives four types of

ports: inner (box) input (port), inner output, outer input, and outer output.

We can wire in the following ways:

1. Every outer output port is wired to exactly one inner output port.

2. Every inner input port is wired to exactly one inner output port or an outer input
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port.

The category of wiring diagrams has boxes as its objects and wiring diagrams as

its morphisms. Wiring diagrams are composed by filling the inner boxes with other

wiring diagrams, and then erasing the middle layer of boxes.

Boxes Wiring Diagrams Composition by nesting

(1.34)

Wiring diagrams are designed to express the flow of variables through the system;

how they are to be copied from one port to another, how they are to be shuffled about,

and (though we haven’t had need for this yet) how they are to be deleted or forgotton.

In order to capture this idea of copying, deleting, and shuffling around variables,

we will work with the category of arities (and variations on it). The category of arities

is extremely important since it captures precisely the algebra of copying, deleting, and

shuffling around variables. In this section, we will interpret various sorts of wiring

diagrams as lenses in categories of arities, which are the free cartesian categories.

Definition 1.3.3.2. The category Arity of arities is the free cartesian category generated

by a single object X. That is, Arity constains an object X, called the generic object, and

for any finite set 𝐼, there is an 𝐼-fold power X
𝐼

of X. The only maps are those that can

be defined from the product structure by pairing and projection.

Explicitly, Arity is has:

• Objects {X𝐼 | 𝐼 a finite set}.
• Maps 𝑓 ∗ : X

𝐼 → X
𝐽

for any function 𝑓 : 𝐽 → 𝐼.

• Composition defined by 𝑔∗ ◦ 𝑓 ∗ := ( 𝑓 ◦ 𝑔)∗ and id := id
∗
.

The cartesian product in Arity is given, in terms of index sets, by the following familiar

formula:

X
𝐼 × X

𝐽 = X
𝐼+𝐽 .

If you like opposite categories, this might clarify things a bit.

Proposition 1.3.3.3. Arity is isomorphic to the opposite of the category finite sets

Arity � FinSetop.

Now, X is just a formal object, so it doesn’t have elements. But we can give a language

for writing down the objects and arrows of Arity that makes it look like it does. Think
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of the elements of X
𝐼

as finite lists of variables X
𝐼 = (𝑥𝑖 | 𝑖 ∈ 𝐼) indexed by the set 𝐼.

Then for any reindexing function 𝑓 : 𝐽 → 𝐼, we can see 𝑓 ∗ as telling us how 𝐽-variables

are assigned 𝐼-variables. We can see this as a 𝐽-indexed list of the variables 𝑥𝑖 . For

example, consider the function 𝑓 : 3→ 2 given by 1 ↦→ 1, 2 ↦→ 1, and 3 ↦→ 2

• 𝑦1

• 𝑦2

• 𝑦3

•𝑥1

•𝑥2

X
3

X
2

In other words, 𝑓 says that the first slot of the resulting list will be filled by the second

variable of the first, and the second slot will be filled by the first variable, and the third

slot will be filled by the second variable. We could write these lists of variables as

(𝑥1 , 𝑥2) ↦→ (𝑥1 , 𝑥1 , 𝑥2) to make it look like a function. We’ll call this the function notation.

Composition is just given by composing functions in the opposite direction. For

example, given some 𝑔 : 4→ 3, we just compose to get our map X
2 → X

4
.

•𝑥1

•𝑥2

•
𝑦1

•
𝑦2

•
𝑦3

• 𝑧1

• 𝑧2

• 𝑧3

• 𝑧4

X
4

X
3

X
2

=

• 𝑧1

• 𝑧2

• 𝑧3

• 𝑧4

•𝑥1

•𝑥2

X
4

X
2

If we write both of these in function notation, then we can see that the composite

can be calculated by just “composing the functions”. The map 𝑓 ∗ : X
3 → X

2
looks

like (𝑥1 , 𝑥2) ↦→ (𝑥1 , 𝑥1 , 𝑥2) in function notation, and the map 𝑔∗ : X
4 → X

3
looks like

(𝑦1 , 𝑦2 , 𝑦3) ↦→ (𝑦1 , 𝑦1 , 𝑦3 , 𝑦2). Their composite would look like (𝑥1 , 𝑥2) ↦→ (𝑥1 , 𝑥1 , 𝑥2 , 𝑥1),
and this is precisely the composite (𝑔 # 𝑓 )∗.

Exercise 1.3.3.4. Express the following morphisms in Arity in terms of lists of variables:

1. The terminal morphism X
2 → X

0
, given by the initial function !

′
: 0 → 2 which

includes empty set into the set with two elements (hint, there’s nothing on one

side).

2. The duplication morphism !
∗

: X→ X
2

given by ! : 2→ 1.

3. The swap morphisms swap
∗

: X
2 → X

2
given by swap : 2→ 2 defined by 0 ↦→ 1

and 1 ↦→ 0.

4. What map corresponds to the map 1 : 1 → 2 picking out 1 ∈ 2 = {1, 2}? What

about 2 : 1→ 2.

5. Convince yourself that any map X
𝐼 → X

𝐽
you can express with the universal

property of products can be expressed by choosing an appropriate 𝑓 : 𝐽 → 𝐼.

♢

Because Arity expresses the algebra of shuffling, copying, and deleting variables in

the abstract, we can use it to define wiring diagrams. Recall from Definition 1.3.1.4 the

definition of lens in an arbitrary cartesian category.
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Definition 1.3.3.5. The category WD of wiring diagrams is defined to be the category

of lenses in the category of arities Arity.

WD := LensArity.

We consider WD as a monoidal category in the same way we consider LensArity as a

monoidal category.

This definition shows us that the wiring diagrams we have been using are precisely

the lenses you can express if you only copy, delete, and shuffle around your variables.

We can read any wiring diagram as a lens in Arity in the following way:

𝑎+
1

𝑎+
2

𝑎+
3

𝑎−
1

𝑎−
2

𝑎−
3

𝑏−
1

𝑏+
1

𝑏+
2

𝑤 = • 𝑏+1

• 𝑏+2

•𝑎+1

•𝑎+2

•𝑎+3

𝑤♯ =

• 𝑎−1

• 𝑎−2

• 𝑎−3

•𝑎+1

•𝑎+2

•𝑎+3

•𝑏−1

(1.35)

Here’s how we interpret a lens

(
𝑤♯∗

𝑤∗

)
:

(
X
𝐴−

X
𝐴+

)
⇆

(
X
𝐵−

X
𝐵+

)
in Arity as a wiring diagram:

• First, we interpret the index set 𝐴− as the set of input ports of the inner boxes,

and the set 𝐴+ as the set of output ports of the inner boxes. Similarly, we see 𝐵−

as the set of input ports of the outer box, and 𝐵+ as the set of output ports of the

outer box.

• Then we remember that 𝑤∗ : X
𝐴+ → X

𝐵+
comes from a reindexing function

𝑤 : 𝐵+ → 𝐴+), which we interpret as selecting for each outer output port 𝑝 ∈ 𝐵+,
the unique inner output port 𝑤(𝑝) it will be wired to.

• Finally, we note that 𝑤♯∗
: X

𝐴+ × X
𝐵− → X

𝐴−
comes from a function 𝑤♯

: 𝐴− →
𝐴+ + 𝐵− (because X

𝐴+ × X
𝐵− = X

𝐴++𝐵−
, where 𝐴+ + 𝐵− is the disjoint union of 𝐴+

and 𝐵−), and we interpret this as selecting for each inner input port 𝑝 ∈ 𝐴− either

the inner output port 𝑤♯(𝑝) ∈ 𝐴+ or the outer input port 𝑤♯(𝑝) ∈ 𝐵− which 𝑝 will

be wired to.

Exercise 1.3.3.6. Translate the following wiring diagrams into lenses in the category of

arities, and vice versa:

1.
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2.

(
𝑤♯

𝑤

)
:

(
X
2×X

1×X
2

X×X×X
2

)
⇆

(
X
2

X
1

)
𝑤 =

•𝑎+
1

1

•𝑎+
2

1

•𝑎+
3

1

•𝑎+
3

2

• 𝑏+1

𝑤♯ =

•𝑎+
1

1

•𝑎+
2

1

•𝑎+
3

1

•𝑎+
3

2

•𝑏−1

•𝑏−2

• 𝑎−1 1

• 𝑎−1 2

• 𝑎−2 1

• 𝑎−3 1

• 𝑎−3 2

♢

Ok, so the wiring diagrams correpond to the lenses in the category of arities. But do

they compose in the same way? Composition of wiring diagrams is given by nesting:

to compute

(
𝑤♯

𝑤

)
#
(
𝑢♯

𝑢

)
, we fill in the inner box of

(
𝑢♯

𝑢

)
with the outer box of

(
𝑤♯

𝑤

)
, and

then remove this middle layer of boxes.

𝑎−
11

𝑎+
11

𝑎−
31

𝑎−
32

𝑎−
21

𝑎+
21

𝑏−
1

𝑏−
2

𝑏+
1

𝑏+
2 # 𝑏−

1

𝑏−
2

𝑏+
1

𝑏+
2

𝑐+
1

=

𝑎−
11

𝑎+
11

𝑎−
31

𝑎−
32

𝑎−
21

𝑎+
21

𝑐+
1

(1.36)

Let’s say in prose how to compose two wiring diagrams. Then, we can check that

this matches the formula given to us by lens composition in Arity.

• An outer output port is wired to a middle output port, and this middle output

port is wired to an inner input port. So, to compose, we wire the outer output

port to this inner output port.

• A inner input port is either wired to an inner input port or a middle input port. If

it is wired to an inner input port, we leave it that way. Suppose that it was instead

wired to a middle input port. This middle input port is wired either to a middle

output port or an outer input port. If it is wired to an outer input port, we then

wire the inner input port to this outer input port. But if it was wired to a middle

output port, we need to follow along to the inner output port that it is wired to;

then we wire the inner input port to this inner output port.
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Phew. After that block of text, I hope the mathematics will feel refreshingly crisp.

Let’s see what the lens composition looks like in Arity:

•𝑎+
1

1

•𝑎+
2

1

•𝑏
+

1

•𝑏
+

2 • 𝑐+1

•𝑎+
1

1

•𝑎+
2

1

•
𝑎+

1
1

•
𝑎+

2
1

•𝑏
+

1

•𝑏
+

2

•
𝑎+

1
1

•
𝑎+

2
1

•𝑏
+

1

•𝑏
+

2

• 𝑎−1 1

• 𝑎−2 1

• 𝑎−3 1

• 𝑎−3 2

It’s worth going through and seeing exactly how lens composition expresses the de-

scription we gave of nesting wiring diagrams above.

That Arity is the free cartesian category generated by a single object means that it

satisfies a very useful universal property.

Proposition 1.3.3.7 (Universal property of Arity). For any cartesian category C and

object 𝐶 ∈ C, there is a cartesian functor ev𝐶 : Arity → C which sends X to 𝐶. This

functor is the unique such functor up to a unique natural isomorphism.

Proof Sketch. The functor ev𝐶 can be defined by “just substitute 𝐶 for X”. Namely, we

send

X
𝐼 ↦→ 𝐶 𝐼

and for every function 𝑓 ∗ : X
𝐼 → X

𝐽
, we send it to 𝑓 ∗ : 𝐶 𝐼 → 𝐶 𝐽 defined by the universal

property of the product in C. This is cartesian because 𝐶 𝐼+𝐽 � 𝐶 𝐼 × 𝐶 𝐽 in any cartesian

category. It is unique up to a unique natural isomorphism because X
𝐼

is the 𝐼-fold

product of X, and so if X ↦→ 𝐶, then universal comparison maps between the image of

X
𝐼

and 𝐶 𝐼 must be isomorphisms. □

We can think of the functor ev𝐶 : Arity → C as the functor which tells us how

to interpret the abstract variables in Arity as variables of type 𝐶. For example, the

functor evR : Arity → Set tells us how to interpret the abstract variables (𝑥𝑖 | 𝑖 ∈ 𝐼)
in Set as variable real numbers {𝑥𝑖 ∈ R | 𝑖 ∈ 𝐼}. Under ev𝐶 , the map of arities

(𝑥1 , 𝑥2 , 𝑥3 ↦→ 𝑥2 , 𝑥2) gets sent to the actual map 𝐶3 → 𝐶2
given by sending (𝑐1 , 𝑐2 , 𝑐3)

to (𝑐2 , 𝑐2).
By the functoriality of the lens construction, this means that given an object 𝐶 ∈

C of a cartesian category of “values that should be flowing on our wires”, we can

interpret a wiring diagram as a lens in C! We record this observation in the following

proposition.
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Proposition 1.3.3.8. Let 𝐶 ∈ C be an object of a cartesian category. Then there is a

strong monoidal functor (
ev𝐶

ev𝐶

)
: WD→ LensC

which interprets a wiring diagram as a lens in C with values in 𝐶 flowing along its

wires.

Proof. This is just Proposition 1.3.1.7 (and Proposition 1.3.2.4) applied to ev𝐶 : Arity→
C from Proposition 1.3.3.7. □

The upshot of Proposition 1.3.3.8 is that we may interpret a wiring diagram as a lens

in whatever cartesian category we are working in. There is, however, a slight issue; in

most of our previous examples, there have been many different types of signals flowing

along the wires. We can fix this by using typed arities. We will keep track of what type

of signal is flowing along each wire, and only allow ourselves to connect wires that

carry the same type of signal.

Definition 1.3.3.9. Let T be a set, elements of which we call types. The category ArityT

is the free cartesian category generated by objects X𝜏 for each type 𝜏 ∈ T. Explicitly,

ArityT has:

• Objects

∏
𝑖∈𝐼 X𝜏𝑖 for any finite set 𝐼 and typing function 𝜏(−) : 𝐼 → T. We interpret

𝜏𝑖 ∈ T as the type of index 𝑖 ∈ 𝐼.
• Maps 𝑓 ∗ :

∏
𝑗∈𝐽 X𝜏𝑗 →

∏
𝑖∈𝐼 X𝜏𝑖 for any function 𝑓 : 𝐼 → 𝐽 which preserves the

typing: 𝜏 𝑓 𝑖 = 𝜏𝑖 .

• Composition is given by 𝑔∗ ◦ 𝑓 ∗ = ( 𝑓 ◦ 𝑔)∗ and the identity is given by id := id
∗
.

That is, ArityT � (Fin ↓ T)op
is dual to the category Fin ↓ T of T-typed finite sets, the

slice category (a.k.a. comma category) of the inclusion Fin ↩→ Set over the set T of

types.

Exercise 1.3.3.10. We blew through that isomorphism ArityT � (Fin ↓ T)op
quickly,

but its not entirely trivial. The category Fin ↓ T has objects functions 𝜏 : 𝐼 → T where

𝐼 is a finite set, and a morphism is a commuting triangle like this:

𝐼 𝐽

T

𝑓

𝜏 𝜏

This is a function 𝑓 : 𝐼 → 𝐽 so that 𝜏 𝑓 𝑖 = 𝜏𝑖 for all 𝑖 ∈ 𝐼.
Expand the isomorphism out in full and check that you understand it. ♢
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Note that Arity = Arity1 is the special case where we have a single type. Just as we

wrote the morphisms in Arity as (𝑥1 , 𝑥2 ↦→ 𝑥2 , 𝑥1 , 𝑥2), we can write the morphisms in

ArityT as

(𝑥1 : 𝜏1 , 𝑥2 : 𝜏2 , 𝑥3 : 𝜏2 ↦→ 𝑥2 : 𝜏2 , 𝑥1 : 𝜏1 , 𝑥2 : 𝜏1)
where 𝜏1 , 𝜏2 , 𝜏3 ∈ T are all (fixed, not variable) types.

We check that ArityT as we defined it does indeed have the correct universal prop-

erty.

Proposition 1.3.3.11. For any T-indexed family of elements 𝐶(−) : T→ C in a cartesian

category C, there is a cartesian functor ev𝐶 : ArityT → C sending X𝜏 to 𝐶𝜏. The functor

ev𝐶 is the unique such functor up to a unique natural isomorphism.

Proof Sketch. Just like in Proposition 1.3.3.7, we define

ev𝐶

(∏
𝑖∈𝐼

X𝜏𝑖

)
:=

∏
𝑖∈𝐼

𝐶𝜏𝑖 . □

Exercise 1.3.3.12. Complete the proof of Proposition 1.3.3.11. ♢

As before, we note that this functor sends a map in ArityT to the function that does

exactly that. For example,

(𝑥1 : 𝜏1 , 𝑥2 : 𝜏2 , 𝑥3 : 𝜏2 ↦→ 𝑥2 : 𝜏2 , 𝑥1 : 𝜏1 , 𝑥2 : 𝜏1)

gets sent by ev𝐶 to the function 𝐶𝜏1
×𝐶𝜏2

×𝐶𝜏3
→ 𝐶𝜏2

×𝐶𝜏1
×𝐶𝜏2

which sends (𝑐1 , 𝑐2 , 𝑐3)
to (𝑐2 , 𝑐1 , 𝑐2)

Corollary 1.3.3.13. For any function 𝑓 : T → T′, there is a change of type functor

evX 𝑓
: ArityT → ArityT.

Proof. We apply Proposition 1.3.3.11 to the family X 𝑓 (−) : T → ArityT′ of objects of

ArityT′. That is, we send ∏
𝑖∈𝐼

X𝜏𝑖 ↦→
∏
𝑖∈𝐼

X𝜏( 𝑓 (𝑖)). □

We can now define the category of typed wiring diagrams to be the category of

lenses in the category of typed arities.

Definition 1.3.3.14. For a set T of types, the category WDT of T-typed wiring diagrams
is the category of lenses in the category of T-typed arities:

WDT := LensT .

As with the singly-typed case, we can interpret any typed wiring diagram as a lens

in a cartesian category of our choosing.
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Proposition 1.3.3.15. For any family 𝐶(−) : T→ C of objects in a cartesian category C,

indexed by a set T of types, there is a strong monoidal functor(
ev𝐶

ev𝐶

)
: WDT → LensC

which interprets a typed wiring diagram as a lens inC with appropriately typed values

flowing along its wires.

Proof. Combine Proposition 1.3.3.7 with Proposition 1.3.1.7. □

Remark 1.3.3.16. Because the action of ev𝐶 is so simple, we will often just equate the

typed wiring diagram with the lens it gives when interpreted in our category of choice.

Example 1.3.3.17. We can describe the wiring diagram

(
𝑤♯

𝑤

)
a.m./p.m.

Hour
(1.37)

from Example 1.3.2.5 as a lens in a category of typed arities using Proposition 1.3.3.15.

We have two types: a.m./p.m. and Hour. So, T = {a.m./p.m.,Hour}. Then

𝑤 = (𝑡 : Hour, 𝑚 : a.m./p.m. ↦→ 𝑡 : Hour, 𝑚 : a.m./p.m.)
𝑤♯ = (𝑡 : Hour, 𝑚 : a.m./p.m. ↦→ 𝑡 : Hour)

giving us a wiring diagram in WDT. We can then interpret this wiring diagram as the

lens from 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 1.3.2.5 by sending the types a.m./p.m. and Hour to the actual sets

{a.m., p.m.} and {1, 2, . . . , 12}. That is, we define the function 𝐶− : T → Set used in

Proposition 1.3.3.15 to send a.m./p.m. and Hour to the sets {a.m., p.m.} and {1, 2, . . . , 12}
respectively.

1.3.4 Wiring diagrams with operations as lenses in Lawvere theories

The wiring diagrams we have described as lenses in categories of arities are pure

wiring diagrams. But in Example 1.3.2.6, we used a wiring diagram (Eq. (1.27)) with

little green beads representing multiplication by a constant scalar, and in Section 1.3.2

we used a wiring diagram with little green beads representing multiplication by a
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matrix (Eq. (1.33)). It is very useful to be able to perform operations on the exposed

variables we are passing to parameters.

In this section, we will see that if we have an algebraic theory of the kinds of operations

we want to perform on our variables while we wire them, we can describe wiring

diagrams with green beads representing those adjustments as lenses in the Lawvere
theory of that algebraic theory.

Algebraic theories are theories of operations that are subject to certain equational

laws.

Informal Definition 1.3.4.1. A algebraic theory T consists:

• A set T𝑛 of 𝑛-ary operations for each 𝑛 ∈ N.

• A set of laws setting some composites of operations equal to others.

Example 1.3.4.2. The algebraic theory of real vector spaces can be described like this:

• There is a binary operation (−) + (−) of vector addition, and for every 𝑟 ∈ R a

unary operation 𝑟 · (−) of scalar multiplication, and a nullary operation (a.k.a.

constant) 0.

• These satisfy the laws that make + and 0 into an abelian group with addition

inverses given by −1 · (−), and which satisfy associativity and distributivity with

regards to scalar multiplication.

(𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐)
0 + 𝑎 = 𝑎

𝑎 + 𝑏 = 𝑏 + 𝑎
𝑎 + (−1 · 𝑎) = 0

𝑟 · (𝑠 · 𝑎) = (𝑟𝑠) · 𝑎
(𝑟 + 𝑠) · 𝑎 = 𝑟 · 𝑎 + 𝑠 · 𝑎

1 · 𝑎 = 𝑎

0 · 𝑎 = 0

We can use an algebraic theory to organize the sorts of operations we are will-

ing or able to perform on the values flowing through the wires of our wiring dia-

grams.

Informal Definition 1.3.4.3. A wiring diagram with operations from an algebraic the-

ory T is a wiring diagram where operations from the theory T can be drawn in little

green beads on the wires.

Example 1.3.4.4. The wiring diagram (1.27) (reproduced below) is a wiring diagram in

the algebraic theory of real vector spaces. The little green beads have scalar multipli-
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cations drawn in them.

𝑐2

𝑐1

We want to make these informal definitions precise. Ultimately, we want to be

able to say that “wiring diagrams with operations from T are lenses in such and such

cartesian category”. We can do this with the notion of Lawvere theory.

Lawvere introduced his theories in his 1963 thesis “Functorial Semantics of Alge-

braic Theories” [Law04] as the invariant concepts of algebraic theories, freed from any

particular presentation by symbols and their relations. In Example 1.3.4.2, we pre-

sented the algebraic theory of real vector spaces in a particular way; but we could have

done it differently, say by avoiding the vector 0 entirely and adding the law (0 ·𝑎)+𝑏 = 𝑏.
Lawvere wanted to avoid these petty differences in presentation. He focuses instead on

the cartesian category freely containing the operations of the theory (satisfying their

laws). This gives an invariant of the concept of real vector space that is independent of

how that concept is presented axiomatically.

A Lawvere theory is, in some sense, a category of arities “with extra maps”. We

think of these extra maps as coming from the operations of some theory.

Definition 1.3.4.5. AT-sorted Lawvere theoryL is a cartesian category equipped with

a bĳective-on-objects functor ArityT ↩→ L.

If T has a single element, we refer to this as a single sorted Lawvere theory.

Where we wrote the objects of Arity as X
𝐼
to suggest the genericness of the generating

object X, we will see that the objects of Lawvere theories are often 𝐴𝐼 for some “actual”

object 𝐴 in some cartesian category.

Example 1.3.4.6. The single sorted Lawvere theory Vect of real vector spaces is the

category of finite dimensional vector spaces, which can be defined as follows:

• For every finite set 𝐼, it has an object R𝐼 ∈ Vect.
• A map 𝑓 : R𝐼 → R𝐽 is a linear map, or equivalently a 𝐽 × 𝐼 matrix.

• The cartesian product R𝐼 × R𝐽 is R𝐼+𝐽 .

Since Vect is a cartesian category, it admits a functor X ↦→ R from Arity. By

construction, this functor is bĳective on objects; we just need to show that it is faithful. If

𝑔∗ , 𝑓 ∗ : X
𝐼 → X

𝐽
are such that 𝑔∗ = 𝑓 ∗ as maps R𝐼 → R𝐽 , then in particular 𝑔∗(𝑒𝑖) = 𝑓 ∗(𝑒𝑖)
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for all standard basis vectors 𝑒𝑖 defined by

𝑒𝑖(𝑗) B
{

1 if 𝑖 = 𝑗,

0 otherwise.

But 𝑔∗(𝑒𝑖)(𝑗) B 𝑒𝑖(𝑔(𝑗)) and 𝑓 ∗(𝑒𝑖)(𝑗) B 𝑒𝑖( 𝑓 (𝑗)), so by varying 𝑖 we can test that 𝑔(𝑗) =
𝑓 (𝑗) for all 𝑗 ∈ 𝐽, and therefore that 𝑔∗ = 𝑓 ∗ as maps X

𝐼 → X
𝐽
.

How do we know that the extra maps in a Lawvere theory really do come from the

operations of an algebraic theory? We show that the Lawvere theory satisfies a certain

universal property: cartesian functors out of it correpond to models of the theory. If

this is the case, we say that the Lawvere theory is presented by the algebraic theory.

Informal Definition 1.3.4.7. Let T be an algebraic theory. A model of T in a cartesian

category C is an object 𝐶 ∈ C together with maps 𝑚( 𝑓 ) : 𝐶𝑛 → 𝐶 for each 𝑛-ary

operation 𝑓 ∈ T𝑛 such that the maps 𝑚( 𝑓 ) satisfy the laws of the theory.

Definition 1.3.4.8. A model of a Lawvere theoryL in a cartesian categoryC is a cartesian

functor 𝑀 : L→ C.

We say that a Lawvere theory is presented by an algebraic theory if they have the

same models in any cartesian category. We can show that our Lawvere theory Vect of

vector spaces is presented by the theory of vector spaces of Example 1.3.4.2.

Proposition 1.3.4.9. Let C be a cartesian category. Then for every real vector space in

C, by which we mean an object 𝑉 ∈ C with a binary addition + : 𝑉2 → 𝑉 , a unary

scalar multiplication 𝑟· : 𝑉 → 𝑉 for each 𝑟 ∈ R, and a nullary 0 : 1→ 𝑉 which satisfy

the laws of a vector space, there is a cartesian functor 𝑉̂ : Vect → C sending R to 𝑉 .

Moreover, this functor is unique up to a unique isomorphism among functors sending

R to 𝑉 .

Proof Sketch. We define the functor 𝑉̂ by sending R𝐼 to 𝑉 𝐼
, and sending the operations

+ : R2 → R, 𝑟· : R→ R, and 0 : R0 → R to the corresponding operations on𝑉 . Given a

general linear map 𝑓 : R𝐼 → R𝐽 , 𝑓 can be expressed as a composite of these operations;

therefore, we can define 𝑉̂( 𝑓 ) to be the corresponding composite of the operations on

𝑉 . □

Definition 1.3.4.10. LetL be a Lawvere theory. The category WDL of wiring diagrams

with operations from L is the category of lenses in L:

WDL B LensL .
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Remark 1.3.4.11. The bĳective-on-objects functor ArityT → L lets us interpret every

T-typed wiring diagram as a wiring diagram with operations from L by Proposi-

tion 1.3.3.15.

In order to interpret a wiring diagram with operations fromL as a lens in a cartesian

category C, we need a cartesian functor L→ C. These are precisely the models of the

Lawvere theory. So, if our interpretation of the wires of our diagrams are models of

our Lawvere theory L, we can interpret diagrams with operations from L.

Example 1.3.4.12. The wiring diagram Eq. (1.33) is a wiring diagram with operations

from Vect, the theory of vector spaces. This is why we are able to put matrices in the

beads.

1.4 Summary and Futher Reading

In this first chapter, we introduced deterministic and differential systems and saw how

they could be composed using wiring diagrams. The trick is that both systems and

wiring diagrams are examples of lenses — systems are lenses with a special domain,

and wiring diagrams are lenses in free cartesian categories.

We will build on these ideas through the rest of the book. Most directly, in Chapter 2,

we will see how non-deterministic systems can be seen as a variant of lenses: monadic
lenses.

Our notion of deterministic system is commonly known as a Moore machine

[Chu58]. The idea of composing dynamical systems — deterministic and differen-

tial — using lenses can be found in [VSL15]. Further exploration of this idea for

both deterministic and differential systems can be found in the work of Bakirtzis and

collaborators: [Bak21][BVF21][BSF21].

Lenses were first defined by Oles in Chapter 6 of his thesis [Ole83] as a “category of

store shapes”. These lenses are the “lawful lenses” of [Fos+07], used to solve the view-

update problem in program design. A group of Haskell programmers including but

not limited to Palmer, O’Connor, Van Laarhoven, and Kmett then generalized lawful

lenses to the sorts of lenses used in this section. See this blog post for more on the

history of lenses: [Hed].





Chapter 2

Non-deterministic systems theories

So far, we have seen how deterministic systems of the discrete- and continuous-time

variety can be wired together. But modelling a system deterministically can be a bit

hubristic: it assumes we have taken account of all variables that act on the state of the

system, so that we can know exactly what will happen next or exactly how the system

is tending to change. Often we know that the way we’ve modeled state is incomplete,

and so knowing the state in our model might not tell us exactly what will happen next.

As an example, consider a person typing out an email. We know that the output

of this system over time will be a stream of ASCII characters, and we won’t model the

various sorts of inputs that might be affecting the person as they write the email. The

particular email written will depend on the person’s state, but this state is extraordi-

narily complex and modelling it to the point that we would know exactly which email

they will write is nigh impossible.

So, instead, we could use what we know about how this person usually writes

emails to predict what the next character will be. This would give us a stochastic model

of the email-writer system.

In this section, we will see a variety of non-deterministic (discrete-time) systems

theories. The kind of non-deterministism — possibilistic, stochastic, etc. — will be

encoded in a commutative monad (Definition 2.1.0.5).

2.1 Possibilistic systems

Suppose that we are observing a deterministic system S from the outside. We can

choose what input 𝑖 ∈ InS to put into the system, and we observe from that what

output 𝑜 ∈ OutS comes out as a result. Can we understand how the system works

from knowing this alone? In other words, can we construct a new system S′ just from

knowing how inputs relate to outputs in S?

In full generality, the answer is of course “no”; if there was only one possible output,

for example, we have no chance to understand what’s going on inside the system. But

45
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if we do observe a bunch of different changing outputs, we can give it a shot.

As a first guess, we might try to model how an input 𝑖 ∈ InS changes the output

𝑜 ∈ OutS that we are seeing. That is, we might try and make StateS′ = OutS, and then

define the new dynamics updateS′(𝑜, 𝑖) be the new output S gives when fed input 𝑖

while it is exposing output 𝑜. There’s just one problem with this idea: we won’t always

get the same output when we feed 𝑖 in to S while it’s exposing 𝑜.

For example, consider the following transition system:

S B

1

blue
2

red

3

blue
4

green

false

true

true

true

false

false

false

true

(2.1)

The inputs to this system are from the set InS = {true, false}, and the outputs are

from the set OutS = {red, blue, green}. Suppose that we can only see what the system

is outputting, and that it is outputing blue. If we feed the system false, we will see

blue. But, if we feed the system true, what happens depends on whether the system

was in state 1 or state 3; if we were in state 1, then we will see red, but if were were

in state 3, we will see blue. So, the next output is not uniquely determined by the

current output and current input — there are many possibilities. We are tempted to

say that blue will transition to either red or blue in our model S′ of the system S. That

is, we want the update of S′ to tell us what is possible, since we can’t know just from the

outputs of S what is determined to happen. We can do that by having the update of S′

give us the set of possibilities:

updateS′(blue, true) = {blue, red}.

In this section, we will see two systems theories which, instead of telling us the next

state, tell us which states are possible or which are probable. Both are examples of

non-deterministic systems theories, since the current state doesn’t determine precisely

the next state.

Definition 2.1.0.1. A possibilistic system S, also written as(
updateS

exposeS

)
:

(
StateS

StateS

)
⇆

(
InS

OutS

)
,

consists of:

• a set StateS of states;
• a set OutS of values for exposed variables, or outputs for short;
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• a set InS of parameter values, or inputs for short;

• a function exposeS : StateS → OutS, the exposed variable of state or expose function,

which takes a state to the output it yields; and

• a function updateS : StateS × InS → PStateS, where PStateS is the set of subsets of

StateS. This is the dynamics or update function which takes a state and a parameter

and gives the set of possible next states.

Remark 2.1.0.2. While Definition 1.2.1.2 can be interepreted in any cartesian category

because it only used maps and the cartesian product, Definition 2.1.0.1 makes use of

the power set operation P which sends a set to its set of subsets. This can’t be interpreted

in any cartesian category — we need something resembling P in order for it to make

sense.

Example 2.1.0.3. A possibilistic automaton can be presented as a transition diagram as

well. Consider, for example, the following diagram:

S′ B

blue red

green

true

false

true

true

falsetrue
false

(2.2)

This system resembles system S of Eq. (2.1), except that it has a single state for

each output. We can tell that this transition diagram represents a possibilistic system

because there are two arrows leaving blue both labeled true. Since the dynamics of

a transition diagram are given by following the arrow labeled by the input along to a

new state, we see that here we will end up at a set of states:

updateS′(blue, true) = {blue, red}.

Example 2.1.0.4. In Example 1.2.1.10, we saw that deterministic finite automata (DFAs)

are examples of deterministic systems. There is another common notion in automata

theory: non-deterministic finite automata (NFAs).

An NFA is a possibilistic system S with finitely many states whose output values

are Booleans: OutS = {true, false}. As with DFAs, the exposed variable exposeS :

StateS → {true, false} tells us whether or not a state is an accept state.

Again, NFAs are question answering machines. But this time, since they are non-

deterministic, we ask whether or not it is possible to accept a given sequence of inputs.

Suppose we have a sequence of inputs 𝑖0 , . . . , 𝑖𝑛 , and we start in a state 𝑠0. Now, because

an NFA is possibilistic, we don’t have a “next state” 𝑠1. Rather, we have a set of states
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𝑆1 B updateS(𝑠0 , 𝑖0). Now, we need to interatively define the next evolution: 𝑆2 should

be the set of states that are possible to get to from any state in 𝑆1. Generally,

𝑆 𝑗+1 B {𝑠′ | 𝑠 ∈ 𝑆 𝑗 , 𝑠′ ∈ updateS(𝑠, 𝑖 𝑗)} =
⋃
𝑠∈𝑆𝑗

updateS(𝑠, 𝑖 𝑗)

We then say that the machine accepts the input sequence if there is any accept state in

𝑆𝑛 .

Example 2.1.0.4 contains an answer to an interesting question: how do we iterate

the behavior of a possibilistic system? For a deterministic system whose update has

the signature updateS : StateS × InS → StateS, we can compose to get

StateS × InS × InS
updateS×InS−−−−−−−−−→ StateS × InS

updateS−−−−−−→ StateS

which sends (𝑠, (𝑖0 , 𝑖1)) to updateS(updateS(𝑠, 𝑖0), 𝑖1). We can do this as many times as

we like to apply an entire sequence of inputs to a state.

But for a possibilistic system, the update has signature updateS : StateS × InS →
PStateS. Now we can’t just compose, if we tried the trick above we would go from

StateS × InS × InS → PStateS × InS, and we’re stuck.

But from updateS : StateS × InS → PStateS we can define a function 𝑈 : PStateS ×
InS → PStateS by

𝑈(𝑆, 𝑖) := {𝑠′ | 𝑠 ∈ 𝑆, 𝑠′ ∈ updateS(𝑠, 𝑖)} =
⋃
𝑠∈𝑆

updateS(𝑠, 𝑖)

Then we can define the iterated action of the system to be the composite

StateS × InS × InS
updateS−−−−−−→ PStateSInS

𝑈−→ PStateS.

This process of lifting a function 𝐴 × 𝐵 → P𝐶 to a function P𝐴 × 𝐵 → P𝐶 is

fundamental, and worthy of abstraction. This operation comes from the fact that P is a

commutative monad. Take a deep breath, because here comes the definition.

Definition 2.1.0.5. Let C be a cartesian category. A monad (𝑀, 𝜂) on C consists of:

• An assignment of an object 𝑀𝐴 to every object 𝐴 ∈ C.

• For every object 𝐴 ∈ C, a map 𝜂𝐴 : 𝐴→ 𝑀𝐴.

• For every map 𝑓 : 𝐴→ 𝑀𝐵, a lift 𝑓 𝑀 : 𝑀𝐴→ 𝑀𝐵.

This data is required to satisfy the following laws:

• (Unit) For any object 𝐴,

𝜂𝑀𝐴 = id𝑀𝐴.

• (Identity) For any map 𝑓 : 𝐴→ 𝑀𝐵,

𝑓 𝑀 ◦ 𝜂𝐴 = 𝑓 .
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• (Composition) For any 𝑓 : 𝐴→ 𝑀𝐵 and 𝑔 : 𝐵→ 𝑀𝐶,

𝑔𝑀 ◦ 𝑓 𝑀 = (𝑔𝑀 ◦ 𝑓 )𝑀 .

From this data, we note that we can extend 𝑀 into a functor 𝑀 : C → C by sending

𝑓 : 𝐴→ 𝐵 to 𝑀 𝑓 B (𝜂𝐵 ◦ 𝑓 )𝑀 : 𝑀𝐴→ 𝑀𝐵. Then 𝜂 : 𝐴→ 𝑀𝐴 is natural in 𝐴, and we

get another natural transformation 𝜇 : 𝑀𝑀𝐴 → 𝑀𝐴 defined by lifting the identity:

𝜇 B id
𝑀

. In fact, a monad may be equivalently defined as a functor 𝑀 : C → C with

natural transformations 𝜂 : 𝐴 → 𝑀𝐴 and 𝜇 : 𝑀2𝐴 → 𝑀𝐴 for which the following

diagrams commutes:

𝑀𝐴 𝑀2𝐴 𝑀𝐴 𝑀3𝐴 𝑀2𝐴

𝑀𝐴 𝑀2𝐴 𝑀𝐴

𝜂

𝜇

𝑀𝜂 𝜇

𝑀𝜇 𝜇

𝜇

(2.3)

For 𝑓 : 𝐴 → 𝑀𝐵, we can recover 𝑓 𝑀 : 𝑀𝐴 → 𝑀𝐵 from this definition of the monad

𝑀 as 𝑀𝐴
𝑀 𝑓
−−→ 𝑀2𝐵

𝜇
−→ 𝑀𝐵.

A monad 𝑀 is said to be commutative if there is a natural transformation 𝜎 : 𝑀𝐴 ×
𝑀𝐵→ 𝑀(𝐴 × 𝐵) for which the following diagrams commute:

•

𝑀𝐴 × 1 𝑀(𝐴 × 1)

𝑀𝐴

𝜋1

(𝑀𝐴×𝜂)#𝜎𝐴,1

𝑀𝜋1

(2.4)

•

1 ×𝑀𝐴 𝑀(1 × 𝐴)

𝑀𝐴

𝜋2

(𝜂×𝑀𝐴)#𝜎1,𝐴

𝑀𝜋2

(2.5)

•

𝑀𝐴 ×𝑀𝐵 ×𝑀𝐶 𝑀𝐴 ×𝑀(𝐵 × 𝐶)

𝑀(𝐴 × 𝐵) ×𝑀𝐶 𝑀(𝐴 × 𝐵 × 𝐶)

𝑀𝐴×𝜎𝐵,𝐶

𝜎𝐴,𝐵×𝑀𝐶 𝜎𝐴,𝐵×𝐶

𝜎𝐴×𝐵,𝐶

(2.6)

•

𝐴 × 𝐵 𝑀𝐴 ×𝑀𝐵

𝑀(𝐴 × 𝐵)

𝜂×𝜂

𝜂
𝜎 (2.7)
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•

𝑀2𝐴 ×𝑀2𝐵 𝑀2(𝐴 × 𝐵)

𝑀𝐴 ×𝑀𝐵 𝑀(𝐴 × 𝐵)

𝜎#𝑀𝜎

𝜇×𝜇 𝜇

𝜎

(2.8)

Remark 2.1.0.6. If you are familiar with the programming language Haskell, you will

likely be familiar with the notion of monad. What we have called 𝜂𝐴 here (which is

traditional in the category theory literature) is called or . What we have called 𝑓 𝑀 for

𝑓 : 𝐴→ 𝑀𝐵 would, in haskell, be called and be defined by

What we have called 𝜇 is called . A monad in haskell is commutative if the following

two programs have the same results: That is, a monad is commutative when its order

of execution doesn’t matter.

Proposition 2.1.0.7. The powerset P is a commutative monad on the category of sets,

with the following data:

• 𝜂 : 𝐴→ P𝐴 sends 𝑎 ∈ 𝐴 to the singleton set {𝑎}.
• For 𝑓 : 𝐴→ P𝐵, 𝑓 P

: P𝐴→ P𝐵 is defined by

𝑓 P(𝑋) =
⋃
𝑎∈𝑋

𝑓 (𝑎).

• 𝜎𝐴,𝐵 : P𝐴 × P𝐵→ P(𝐴 × 𝐵) is defind by

𝜎𝐴,𝐵(𝑋,𝑌) = {(𝑎, 𝑏) | 𝑎 ∈ 𝑋, 𝑏 ∈ 𝑌}.

Proof. We just need to check the laws.

• The function 𝜂P

𝐴
takes a set 𝑋 ∈ P𝐴 and yields

⋃
𝑥∈𝑋{𝑥}, which is equal to 𝑋.

• Let 𝑓 : 𝐴→ P𝐵 be a function. Then 𝑓 P({𝑎}) = ⋃
𝑎′∈{𝑎} 𝑓 (𝑎′) = 𝑓 (𝑎) for any element

𝑎 ∈ 𝐴.

• Let 𝑓 : 𝐴→ P𝐵 and 𝑔 : 𝐵→ P𝐶. For 𝑋 ∈ P𝐴, we have

𝑔P ◦ 𝑓 P(𝑋) =
⋃

𝑏∈ 𝑓 P(𝑋)
𝑔(𝑏)

=
⋃

𝑏∈⋃𝑎∈𝑋 𝑓 (𝑎)
𝑔(𝑏)

=
⋃
𝑎∈𝑋

⋃
𝑏∈ 𝑓 (𝑎)

𝑔(𝑏)

= (𝑔P ◦ 𝑓 )P.

It remains to show that the powerset monad is commutative. We note that P acts as

a functor on 𝑓 : 𝐴→ 𝐵 by

P 𝑓 (𝑋) = (𝜂𝐵 ◦ 𝑓 )P(𝑋) =
⋃
𝑎∈𝑋
{ 𝑓 (𝑎)} = 𝑓 [𝑋].
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sending a subset of 𝐴 to its image in 𝐵. We also note that 𝜇 : P
2𝐴 → P𝐴 defined by

𝜇 = id
P

P𝐴 sends a set 𝑆 of subsets of 𝑆 to its union

⋃
𝑠 ∈ 𝑆𝑠.

• (Eq. (2.4)) Beginning with (𝑋, ∗) ∈ P𝐴 × 1 (taking 1 � {∗}), we need to show that

P𝜋1 ◦ 𝜎𝐴,1(𝑋, {∗}) = 𝑋. Now, 𝜎𝐴,1(𝑋, {∗}) = {(𝑎, 𝑏) | 𝑎 ∈ 𝑋, 𝑏 ∈ {∗}}; since there

is just one 𝑏 ∈ {∗}, every 𝑎 ∈ 𝑋 is paired with some 𝑏, so projecting out the first

component gives us all of 𝑋.

• (Eq. (2.5)) This is the same as the above, but on the other side.

• (Eq. (2.6)) If we have (𝑋,𝑌, 𝑍) ∈ P𝐴 × P𝐵 × P𝐶, both sides of this diagram will

give us {(𝑎, 𝑏, 𝑐) | 𝑎 ∈ 𝑋, 𝑏 ∈ 𝑌, 𝑐 ∈ 𝑍}.
• (Eq. (2.7)) For (𝑎, 𝑏) ∈ 𝐴 × 𝐵, we have 𝜂(𝑎, 𝑏) = {𝑎, 𝑏}, and 𝜎(𝜂(𝑎), 𝜂(𝑏)) = {(𝑥, 𝑦) |
𝑥 ∈ {𝑎}, 𝑦 ∈ {𝑏}}.

• (Eq. (2.8)) Let 𝑆 be a set of subsets of 𝐴 and 𝑇 a set of subsets of 𝐵. The bottom

path gives us

𝜎(𝜇(𝑆), 𝜇(𝑇)) =
{
(𝑥, 𝑦)

����� 𝑥 ∈⋃
𝑠∈𝑆

𝑠, 𝑦 ∈
⋃
𝑡∈𝑇

𝑡

}
while taking the top path, we first get 𝜎(𝑆, 𝑇) = {(𝑠, 𝑡) | 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇} and then

𝑀𝜎 of that to get

𝜎 [{(𝑠, 𝑡) | 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇}] = {{(𝑥, 𝑦) | 𝑥 ∈ 𝑠, 𝑦 ∈ 𝑡} | 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇}.

Finally, we take the union over this to get

𝜇(P𝜎(𝜎(𝑆, 𝑇))) =
⋃

𝑠∈𝑆, 𝑡∈𝑇
{(𝑥, 𝑦) | 𝑥 ∈ 𝑠, 𝑦 ∈ 𝑡}.

We end out proof by noting that{
(𝑥, 𝑦)

����� 𝑥 ∈⋃
𝑠∈𝑆

𝑠, 𝑦 ∈
⋃
𝑡∈𝑇

𝑡

}
=

⋃
𝑠∈𝑆, 𝑡∈𝑇

{(𝑥, 𝑦) | 𝑥 ∈ 𝑠, 𝑦 ∈ 𝑡}.

□

Remark 2.1.0.8. While the powerset monad is commutative, the list monad is not. For

the list monad, Eq. (2.8) does not hold since the two lists end up in a different order in

the end.

Using the commutative monad structure of P, we can see that 𝑈 : PStateS × InS →
PStateS is the composite

PStateS × InS
id×𝜂
−−−→ PStateS × PInS

𝜎−→ P(StateS × InS)
update

P

S−−−−−−→ PStateS.

This lets us iteratively apply the update function to a starting state or set of states.

It also lets us get the exposed variable out at the end. If we’ve been iteratively

running a possibilistic system , then we won’t know which state we are in but instead

have a set 𝑆 ∈ PStateS of states we could possibly be in. Because of this, we can’t
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directly apply exposeS : StateS → OutS, since it takes in a single state. But the monad

structure of P gives us a function PexposeS : PStateS → POutS. Applying this to our

current set of possible states gives us a set of possible outputs, which is the best we

could hope to know.

Do Notation If we have a function 𝑓 : 𝑋 → 𝑌, we can think of this as mapping 𝑥

in 𝑋 to 𝑓 (𝑥) in 𝑌 using “generalized elements” (see Remark 1.3.1.3). The do notation
extends this way of writing morphisms in a cartesian category to include the action

of a commutative monad 𝑀. The do notation is based on this simple equation for

𝑓 : 𝑋 → 𝑀𝑌:

do
𝑥 ← 𝑚

𝑓 (𝑥)
B 𝑓 𝑀(𝑚) (2.9)

where 𝑚 is an element of 𝑀𝑋 and 𝑓 : 𝑋 → 𝑀𝑌. For 𝑀 = D, we can understand the

do notation in this way: 𝑚 is a subset of 𝑋, 𝑓 𝑀(𝑚) is the subset { 𝑓 (𝑥) ∈ 𝑌 | 𝑥 ∈ 𝑚}. We

see this reflected in the do notation; we can read it as saying “get an element 𝑥 from

𝑚, and then apply 𝑓 (𝑥) to it; join together all the results.” As we see more monads, we

will see that a similar story can be told about them using the do notation.

There are a few rules for do notation which correspond to the laws for a monad.

We can discover them by using Eq. (2.9) to expand out a few terms. First of all, since

𝜂𝑀 = id𝑀𝑋 , if 𝑚 is an element of 𝑀𝑋, then

do
𝑥 ← 𝑚

𝜂(𝑥)
= 𝑚

Next, since 𝜂 # 𝑓 𝑀 = 𝑓 , we find that

do
𝑥′← 𝜂(𝑥)
𝑓 (𝑥′)

= 𝑓 (𝑥)

Finally, since 𝑓 𝑀 # 𝑔𝑀 = ( 𝑓 # 𝑔𝑀)𝑀 , we find that

do

𝑦 ←
do

𝑥 ← 𝑚

𝑓 (𝑥)

𝑔(𝑦)

=

do
𝑥 ← 𝑚

do
𝑦 ← 𝑓 (𝑥)
𝑔(𝑦)

Because these two expressions with nested do’s are equal, we can simplify our notation

by writing them as:

do
𝑥 ← 𝑚

𝑦 ← 𝑓 (𝑥)
𝑔(𝑦)
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So far, we haven’t used any pairs (𝑥, 𝑦) in our do notation. To use pairs, we need

our monad to be commutative. We can write down two expressions, assuming 𝑚1 is

an element of 𝑀𝑋 and 𝑚2 is an element of 𝑀𝑌. A monad is commutative precisely

when these two expressions are equal:

do
𝑥 ← 𝑚1

𝑦 ← 𝑚2

𝜂(𝑥, 𝑦)

=

do
𝑦 ← 𝑚2

𝑥 ← 𝑚1

𝜂(𝑥, 𝑦)

When they are both equal, they are 𝜎(𝑚1 , 𝑚2), where 𝜎 : 𝑀𝑋 × 𝑀𝑌 → 𝑀(𝑋 × 𝑌) is

from the definition of a commutative monad. This lets us describe morphisms quite

nicely. For example, given 𝑓 : 𝑋 → 𝑀𝑌, 𝑔 : 𝑍→ 𝑀𝑊 , and ℎ : 𝑌 ×𝑊 → 𝑀𝑄, we may

define

do
𝑦 ← 𝑓 (𝑥)
𝑤 ← 𝑔(𝑧)
ℎ(𝑦, 𝑤)

which desugars to the composite

𝑋 × 𝑍
𝑓×𝑔
−−−→ 𝑀𝑌 ×𝑀𝑊 𝜎−→ 𝑀(𝑌 ×𝑊) ℎ𝑀−−→ 𝑀𝑄.

In particular, to iterate a system S with update updateS : StateS × InS → DStateS,

we can define

𝑈(𝑆, 𝑖) B
do

𝑠 ← 𝑆

updateS(𝑠, 𝑖)

2.2 Stochastic systems

Possibility is not the only kind of non-determinism. When studying how things change

in the world, we often notice that we can only predict how likely some change will be,

and not precisely which change will occur. If instead of asking whether a change is

possible, we ask how probable it is, we arrive at a notion of probabilistic or stochastic
system.

The notion of a stochastic system is based on the idea that there should be a prob-

ability of a given change occuring, conditioned upon the current state. A useful way

to formulate the notion of conditional probability is the notion of stochastic map. A

stochastic map from 𝐴 to 𝐵 is a function which takes an 𝑎 ∈ 𝐴 and yields a probability

distribution 𝑝(− | 𝑎) on elements of 𝐵 which we think of as likelyhoods conditioned on

𝑎. We can make this more precise using the notion of monad.
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Definition 2.2.0.1. For a set 𝐴, the set D𝐴 is the set of finitely supported probability

distributions on 𝐴. A probability distribution on 𝐴 is a function 𝑝 : 𝐴 → [0, 1] which

takes non-zero values at only finitely many elements of 𝐴, and for which∑
𝑎∈𝐴

𝑝(𝑎) = 1.

This sum makes sense because only finitely many elements of 𝐴 give non-zero 𝑝(𝑎).
The elements of D𝐴 can be identified with formal convex combinations of elements of

𝐴. A formal convex combination ∑
𝑎∈𝑋

𝜆𝑎𝑎

of elements of 𝐴 consists of a finite and inhabited
a

subset 𝑋 ⊆ 𝐴 of elements together

with a function 𝜆(−) : 𝑋 → (0, 1] assigning each 𝑎 ∈ 𝑋 a coefficient 𝜆𝑎 such that∑
𝑎∈𝑋 𝜆𝑎 = 1.

D𝐴 =

{∑
𝑎∈𝑋

𝜆𝑎𝑎

�����𝑋 ⊆ 𝐴, 𝑋 finite and inhabited, 𝜆(−) : 𝑋 → (0, 1],
∑
𝑎∈𝑋

𝜆𝑎 = 1

}
.

a
That is, there is some 𝑎 ∈ 𝑋.

Example 2.2.0.2. Let’s see what D𝐴 looks like for a few different sets 𝐴:

1. If 𝐴 = {𝑎} has a single element, then there is only one inhabited subset 𝑋 ⊆ 𝐴
(namely 𝑋 = 𝐴) and since the coefficients of any convex linear combination must

sum to 1, the coefficient of the single element must be 1. So D{𝑎} = {1 ·𝑎} contains

a single element.

2. If 𝐴 = {𝑎, 𝑏}, things get more interesting. Now there are three inhabited subsets

𝑋: {𝑎}, {𝑏}, and {𝑎, 𝑏}. A convex combination with a single element must have

coefficient 1, so we at least have the convex combinations 1 · 𝑎 and 1 · 𝑏. But for

the set {𝑎, 𝑏}, we have the convex combination 𝜆𝑎𝑎 + 𝜆𝑏𝑏 where 𝜆𝑎 + 𝜆𝑏 = 1 and

𝜆𝑎 , 𝜆𝑏 > 0. If we make the association of 1 · 𝑎 with 1 · 𝑎 + 0 · 𝑏, and similarly for

1 · 𝑏, then we can see that

D{𝑎, 𝑏} = {𝜆𝑎 + (1 − 𝜆)𝑏 | 𝜆 ∈ [0, 1]}

which is bĳective with the closed interval [0, 1].
3. In general, if 𝐴 is a finite set with 𝑛 + 1 elements, then D𝐴 can be identified with

the standard 𝑛-simplex, that is, the set of solutions to the equation

∑𝑛+1

𝑖=1
𝜆𝑖 = 1 for

𝜆𝑖 ∈ [0, 1].

Dn + 1 � {(𝜆1 , . . . ,𝜆𝑛+1) ∈ [0, 1]𝑛+1 |
𝑛+1∑
𝑖=1

𝜆𝑖 = 1}.
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Definition 2.2.0.3. A stochastic map from a set 𝐴 to a set 𝐵 is a function 𝑓 : 𝐴 → D𝐵,

assigning each 𝑎 ∈ 𝐴 to a probability distribution 𝑓 (𝑎) on 𝐵.

If the sets 𝐴 and 𝐵 are finite, then we can write a stochastic map 𝑓 : 𝐴 → D𝐵 as

a stochastic matrix. This is an 𝐵 × 𝐴 matrix whose 𝑏𝑎-entry is 𝑓 (𝑎)(𝑏). Any matrix

of positive entries where every column sums to 1 arises as the stochastic matrix of a

stochastic map.

We think of a stochastic map 𝑓 : 𝐴 → D𝐵 as giving a bunch of conditional proba-

bilities

𝑝(𝑏 | 𝑎) B 𝑓 (𝑎)(𝑏).

Example 2.2.0.4. If I see someone enter the office soaking wet, it is likely to have been

raining. If they are dry, it may be less likely that it was raining; but, if they have an

umbrella, then they might be dry but it is still more likely that it was raining. We can

express these various conditional probabilities as a stochastic function

{wet, dry} × {umbrella, no-umbrella} → D{raining, not-raining}.

We can describe this stochastic function in full by giving its stochastic matrix:

[ (wet,umbrella) (wet,no-umbrella) (dry,umbrella) (dry,no-umbrella)

raining .9 .9 .5 .3

not-raining .1 .1 .5 .7

]

A stochastic system is a system whose dynamics is given by a stochastic map.

Definition 2.2.0.5. A stochastic system S, also written as(
updateS

exposeS

)
:

(
StateS

StateS

)
⇆

(
InS

OutS

)
,

consists of:

• a set StateS of states;
• a set OutS of values for exposed variables, or outputs for short;

• a set InS of parameter values, or inputs for short;

• a function exposeS : StateS → OutS, the exposed variable of state or expose function,

which takes a state to the output it yields; and

• a function updateS : StateS× InS → DStateS, where DStateS is the set of subsets of

StateS. This is the dynamics or update function which takes a state and a parameter

and gives the set of possible next states.
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Remark 2.2.0.6. Note that the exposed variable of a stochastic system is not a stochastic

function. This is theoretically important for wiring stochastic systems together, because

it is necessary for stochastic lens composition to be well defined. We will return to this

point in Section 2.6.

Remark 2.2.0.7. A stochastic system is often called a Markov process.

Example 2.2.0.8. A simple but entertaining example of a stochastic system is a text

generator. Suppose we have a big pile of text — say, the plays written by a famous

author — and we want to generate some text that looks like it was written by the same

author. There are many sophisticated ways to do this, but here’s a very bone-headed

approach. We will look at the text in 5-character length sequences, and ask: how likely

is for a given character to follow this 5-character sequence.

For example, if our text is

To be or not to be, that is the question.

Then we can see that there is a 50% chance that “ ” and a 50% chance that “,” follows

the 5-character sequence “to be”. Of course, such a small sample wouldn’t give us

very useful statistics, but if we use the combined works of Shakespeare, we might get

a better sense of what is likely to occur next.

Now we build a stochastic system S which will generate text. We take StateS to be

length 5 sequences of characters from our alphabet Alphabet: StateS = Alphabet5. We

will expose the first character in the sequence: OutS = Alphabet and exposeS(𝑠) = 𝑠1.

We don’t need any input to the system: InS = {∗}. Now, updateS(𝑠) will assign to

a sequence (𝑠2 , 𝑠3 , 𝑠4 , 𝑠5 , 𝑐) the probability that the character 𝑐 follows the sequence

𝑠 = (𝑠1 , 𝑠2 , 𝑠3 , 𝑠4 , 𝑠5) in our sample text, and assign all other sequences the probability

0.

If we run our stochastic text generator over time, it will produce a stream of char-

acters that have the statistical properties of our sample text. As simple minded as this

approach is, it can produce some fun results:

HAMLET

Whose image even but now appear’d again!

HORATIO

From top to toe?

FRANCISCO

Bernardo, on their promise, as it is a course to any moment leisure, but to

persever Than the cock, that this believe Those friend on Denmark Do not

dull thy name with a defeated him yesternight.
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Example 2.2.0.9. A stochastic source process is a stochastic system Swith no inputs InS = 1.

Such a stochastic system would be boxed up like this:

Source

These are means by which random streams of outputs can be generated. In Ex-

ample 2.2.0.8, we described a stochastic source process that produced Shakespearean

writing (of a stunted sort). In his seminal paper “A mathematical theory of commu-

nication”, Claude Shannon imagined communicators as stochastic source processes

sending somewhat random language through various communication channels. This

point of view is still used today to model communications that have some complicated

structure which, not knowing how that structure is generated in particular, are best

modeled as somewhat random processes.

Example 2.2.0.10. We can model a faulty wire as a stochastic system of the following

sort:

FaultyWire BitBit

We will define FaultyWire as follows:

• A faulty wire will either have good contact, partial contact, or missing contact,

and it will be carrying a high or low charge:

StateFaultyWire B {high, low} × {good, partial, missing}.

• The faulty wire will take in either a high or low:

InFaultyWire = OutFaultyWire = Bit = {high, low}.

• The faulty wire exposes its current charge:

exposeFaultyWire(𝑏, 𝑠) = 𝑏.

• The faulty wire will try and set its charge to the charge on the incoming wire, but

if it is has bad contact, this won’t succeed and it will have low charge. It’s contact

also has a small chance to decay.

updateFaultyWire((𝑏, good), 𝑖) = .99(𝑖 , good) + .01(𝑖 , partial),
updateFaultyWire((𝑏, partial), 𝑖) = .50(𝑖 , partial) + .49(low, partial) + .01(low, missing),
updateFaultyWire((𝑏, missing), 𝑖) = (low, no).
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When wiring up our systems, if we put a faulty wire in between, we will introduce

the probability of the failure of this wire to communicate into the model.

Example 2.2.0.11. We can draw transition diagrams for stochastic systems, just like we

do for deterministic and possibilistic systems. This time, we will label each transition

with the probability that it occurs. We just have to make sure that the probability labels

on all the outgoing transitions with the same input label on any state sum to 1.

For example, here is a stochastic system drawn as a transition diagram:

blue red

true,.3

false,.6

false,.4

false,.1

true,.9

true,.1

false,.9

(2.10)

The set D of probability distributions is a commutative monad, like the powerset P

monad.
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Proposition 2.2.0.12. The assignment of a set𝐴 to its set D𝐴 of probability distributions

is a commutative monad with the data:

• 𝜂𝐴 : 𝐴 → D𝐴 sends every element 𝑎 to its Dirac delta distribution 𝜂𝐴(𝑎) = 1 · 𝑎
which assigns probability 1 to 𝑎 and probability 0 to everything else. As a convex

linear combination, it looks like this:

𝜂𝐴(𝑎) =
∑
𝑎′∈{𝑎}

1 · 𝑎′

• Given a stochastic map 𝑓 : 𝐴 → D𝐵 sending 𝑎 ∈ 𝐴 to 𝑓 (𝑎) = ∑
𝑏∈𝑌𝑎 𝜌𝑏𝑎𝑏, we

can push forward a probability distribution 𝑝 =
∑
𝑎∈𝑋 𝜆𝑎𝑎 on 𝐴 to a probability

distribution

𝑓 D(𝑝) B
∑

𝑏∈⋃𝑎∈𝑋 𝑌𝑎

(∑
𝑎∈𝑋

𝜌𝑏𝑎𝜆𝑎

)
𝑏 =

∑
𝑎∈𝑋

∑
𝑏∈𝑌𝑎

𝜌𝑏𝑎𝜆𝑎𝑏

on 𝐵. In classical terms, this says that given conditional probabilities 𝑝(𝑏 | 𝑎) B
𝑓 (𝑎)(𝑏) and any prior distribution 𝑝(𝑎) B 𝜆𝑎 , we can form a posterior distribution

𝑝(𝑏) B ∑
𝑎∈𝐴 𝑝(𝑏 | 𝑎)𝑝(𝑎).

• Given a probability distribution

∑
𝑎∈𝑋 𝜆𝑎𝑎 on 𝐴 and

∑
𝑏∈𝑌 𝜇𝑏𝑏 on 𝐵, we can form

their joint distribution ∑
(𝑎,𝑏)∈𝑋×𝑌

𝜆𝑎𝜇𝑏(𝑎, 𝑏)

on 𝐴×𝐵. This gives us 𝜎 : D𝐴×D𝐵→ D(𝐴×𝐵). In classical terms, this says that

the probability of two independent events is the product of their probabilities:

𝑝(𝑎, 𝑏) = 𝑝(𝑎)𝑝(𝑏).

Proof. We check the laws:

• If we push forward a distribution 𝑝 =
∑
𝑎∈𝑋 𝜆𝑎𝑎 along 𝜂𝐴 : 𝐴→ D𝐴, we get

𝜂D

𝐴(𝑝) =
∑
𝑎∈𝑋

∑
𝑎′∈{𝑎}

1 · 𝜆𝑎′𝑎′ =
∑
𝑎∈𝑋

𝜆𝑎𝑎.

• For a stochastic map 𝑓 : 𝐴→ D𝐵, we aim to show that pushing forward the Dirac

delta distribution 𝜂𝐴(𝑎) along 𝑓 gives 𝑓 (𝑎) = ∑
𝑏∈𝑌𝑎 𝜆𝑏𝑎𝑏. The definition of push

forward gives us

𝑓 D(𝜂𝐴(𝑎)) =
∑
𝑎′∈{𝑎}

∑
𝑏∈𝑌𝑎′

𝜆𝑏𝑎 · 1 · 𝑏 =
∑
𝑏∈𝑌𝑎

𝜆𝑏𝑎𝑏.

• Given stochastic functions 𝑓 : 𝐴 → D𝐵 and 𝑔 : 𝐵 → D𝐶, we need to show that

𝑔D( 𝑓 D(𝑝)) = (𝑔D ◦ 𝑓 )D(𝑝). Let

𝑝 =
∑
𝑎∈𝑋

𝜆𝑎 , 𝑓 (𝑎) =
∑
𝑏∈𝑌𝑎

𝜌𝑏𝑎𝑏, 𝑔(𝑏) =
∑
𝑐∈𝑍𝑏

𝛾𝑐𝑏𝑐.
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Then we see that

𝑔D( 𝑓 (𝑎)) =
∑

𝑐∈⋃𝑏∈⋃𝑎∈𝑋 𝑌𝑎

𝛾𝑐𝑏𝜌𝑏𝑎𝑐

so that, finally

𝑔D( 𝑓 D(𝑝)) = 𝑔D

(∑
𝑎∈𝑋

∑
𝑏∈𝑌𝑎

𝜌𝑏𝑎𝜆𝑎𝑐

)
=

∑
𝑎∈𝑋

∑
𝑏∈𝑌𝑎

∑
𝑐∈𝑍𝑏

𝛾𝑐𝑏𝜌𝑏𝑎𝜆𝑎𝑐

= (𝑔D ◦ 𝑓 )D(𝑝).

Next, we check that the laws of a commutative monad hold. We note that for a

function 𝑓 : 𝐴→ 𝐵, the function D 𝑓 = (𝜂𝐵 ◦ 𝑓 )D is defined by

D 𝑓

(∑
𝑎∈𝑋

𝜆𝑎𝑎

)
=

∑
𝑎∈𝑋

∑
𝑏∈{ 𝑓 (𝑎)}

𝜆𝑎𝑏 =
∑
𝑎∈𝑋

𝜆𝑎 𝑓 (𝑎).

Furthermore, 𝜇 : D
2𝐴 → D𝐴 sends a formal convex combination

∑
𝑖 𝜆𝑖𝑝𝑖 of proba-

bility distributions to the actual convex combination of those probability distributions,

namely the distribution

𝜇

(∑
𝑖

𝜆𝑖𝑝𝑖

)
(𝑎) B

∑
𝑖

𝜆𝑖𝑝𝑖(𝑎).

• (Eq. (2.4)) The unit on 1 � {∗} sends ∗ to the distribution 1 · ∗. So, 𝜎(𝑝, 1) =∑
(𝑎,∗)∈𝑋×1 𝜆𝑎 · 1 · (𝑎, ∗), and projecting out again gives us 𝑝 =

∑
𝑎∈𝑋 𝜆𝑎𝑎.

• (Eq. (2.5)) The same, but on the other side.

• (Eq. (2.6)) Suppose that we have

𝑝 =
∑
𝑎∈𝑋

𝑝𝑎𝑎, 𝑞 =
∑
𝑏∈𝑌

𝑞𝑏𝑏, 𝑟 =
∑
𝑐∈𝑍

𝑟𝑐𝑐.

The both paths of Eq. (2.6) give us the distribution∑
(𝑎,𝑏,𝑐)∈𝑋×𝑌×𝑍

𝑝𝑎𝑞𝑏𝑟𝑐(𝑎, 𝑏, 𝑐).

• (Eq. (2.7)) This is asking whether 𝛿(𝑎,𝑏) = 𝛿𝑎𝛿𝑏 as distributions on 𝐴 × 𝐵, which

they are.

• (Eq. (2.8)) Let

∑
𝑖 𝜆𝑖𝑝𝑖 be an element of DD𝐴, and similarly let

∑
𝑗 𝜌 𝑗𝑞 𝑗 be an

element of DD𝐵. Following the bottom path around, we get

𝜎
©­«𝜇

(∑
𝑖

𝜆𝑖𝑝𝑖

)
, 𝜇

©­«
∑
𝑗

𝜌 𝑗𝑞 𝑗
ª®¬ª®¬ (𝑎, 𝑏) =

(∑
𝑖

𝜆𝑖𝑝𝑖(𝑎)
) ©­«

∑
𝑗

𝜌 𝑗𝑞 𝑗(𝑏)ª®¬ =
∑
𝑖

∑
𝑗

𝜆𝑖𝜌 𝑗𝑝𝑖(𝑎)𝑞 𝑗(𝑏).
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Meanwhile,

𝜎
©­«
∑
𝑖

𝜆𝑖𝑝𝑖 ,
∑
𝑗

𝜌 𝑗𝑞 𝑗
ª®¬ =

∑
𝑖

∑
𝑗

𝜆𝑖𝜌 𝑗(𝑝𝑖 , 𝑞 𝑗).

and taking D𝜎 of that gives ∑
𝑖

∑
𝑗

𝜆𝑖𝜌 𝑗𝑝𝑖𝑞 𝑗

which means that finally

𝜇
©­«D𝜎

©­«𝜎 ©­«
∑
𝑖

𝜆𝑖𝑝𝑖 ,
∑
𝑗

𝜌 𝑗𝑞 𝑗
ª®¬ª®¬ª®¬ (𝑎, 𝑏) =

∑
𝑖

∑
𝑗

𝜆𝑖𝜌 𝑗𝑝𝑖(𝑎)𝑞 𝑗(𝑏).

□

Exercise 2.2.0.13. Let 𝑓 : n → Dm and 𝑔 : m → Dk be stochastic maps. Note that we

can interpret 𝑓 as an 𝑚 × 𝑛 stochastic matrix 𝐹, and similarly 𝑔 as a 𝑘 × 𝑚 stochastic

matrix 𝐺. Show that the stochastic map 𝑔D ◦ 𝑓 is associated to the stochastic matrix

𝐺𝐹. ♢

Just as the commutative monad structure of P helped us iterate possibilistic systems

and get the set of possible output values from them, so the commutative monad

structure of D helps us iterate stochastic systems and get a probability distribution of

likely output values from them.

Given a stochastic system S, we have updateS : StateS × InS → DStateS. From this,

we can get a stochastic map:

DStateS × InS
id×𝜂
−−−→ DStateS ×DInS

𝜎−→ D(StateS × InS)
update

D

S−−−−−−→ DStateS

which will let us iterate. We can see that this sends a probability distribution 𝑝 on

states and an input 𝑖 to the distribution

𝑠 ↦→
∑

𝑠′∈StateS
𝑝(𝑠′)updateS(𝑠′, 𝑖)(𝑠).

2.3 Monadic systems theories and the Kleisli category

We have now seen two sorts of non-determinism expressed by commutative monads.

To each of these we associated a systems theories:

• To the powerset monad P, we associated the systems theory of possibilistic sys-

tems. This is because a map 𝑓 : 𝐴→ P𝐵 is a possibilistic map — it assigns a set of

possible images to each element 𝑎 ∈ 𝐴.

• To the probability distribution monad D, we associated the theory of stochastic

systems. This is because a map 𝑓 : 𝐴→ D𝐵 is a stochastic map.
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In general, for any commutative monad 𝑀 we call a map of the form 𝑓 : 𝐴 → 𝑀𝐵 a

Kleisli map. The structure of a monad on 𝑀 lets us compose Kleisli maps, giving us the

Kleisli category of the monad. The commutativity then makes the Kleisli category into

a symmetric monoidal category.

Definition 2.3.0.1. Let 𝑀 : C → C be a commutative monad on a cartesian category.

The Kleisli category Kl(𝑀) is defined as follows:

• The objects of Kl(𝑀) are the same as those of C.

• A map 𝑓 : 𝐴⇝ 𝐵 in Kl(𝑀) is a map 𝑓 : 𝐴→ 𝑀𝐵 in C.

• The identity id𝐴 : 𝐴⇝ 𝐴 is 𝜂𝐴 : 𝐴→ 𝑀𝐴.

• For 𝑓 : 𝐴 ⇝ 𝐵 and 𝑔 : 𝐵 ⇝ 𝐶, their composite is 𝑓 # 𝑔𝑀 : 𝐴 → 𝑀𝐶. In do

notation, the Kleisli composite is given by

( 𝑓 # 𝑔)(𝑎) B
do

𝑏 ← 𝑓 (𝑎)
𝑔(𝑏)

.

Since 𝑔𝑀 = 𝑀𝑔 #𝜇, the Kleisli composite may be equivalently defined as 𝑓 #𝑀𝑔 #𝜇.

The Kleisli category of 𝑀 becomes a symmetric monoidal structure with with the

tensor 𝐴×𝐵 and 1. Note that although 𝐴×𝐵 is cartesian in C, it will rarely be cartesian

in Kl(𝑀).

We can understand Kleisli composition a bit better if we introduce a graphical

language for monads.1 This will also help us later in Section 2.6.4 when we learn about

biKleisli composition. We will draw an object of our category 𝑋 ∈ C as a string:

and a map 𝑓 : 𝑋 → 𝑌 as a bead:

𝑓

Composition is drawn by connecting strings, and the identity map on 𝑋 is represented

by the same string which represents 𝑋. We will draw our monad 𝑀 : C → C as a red

string:

We can draw the natural transformations 𝜂 : idC ⇒ 𝑀 and 𝜇 : 𝑀2 ⇒ 𝑀 as

and

respectively. The laws Eq. (2.3) can be written as:

=

1
If you know of it, this is just the usual string diagram language for 2-categories.
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=

The map 𝑀 𝑓 : 𝑀𝑋 → 𝑀𝑌 on objects is written:

𝑓

Note that functoriality is baked in to this string diagram notation; the following diagram

could either be interpreted as 𝑀 𝑓 #𝑀𝑔 or 𝑀( 𝑓 #𝑔), which are equal by the functoriality

of 𝑀:

𝑓 𝑔

The naturality of 𝜂 and 𝜇 is also baked into this notation; it just means we can move

them independently of the beads representing functions:

𝑓

=

𝑓

With these conventions in hand, we can now represent a Kleisli map 𝑓 : 𝑋 → 𝑀𝑌 as

𝑓

The unit 𝜂 : 𝑋 → 𝑀𝑋 is written

The composition of Kleisli maps 𝑓 : 𝑋 → 𝑀𝑌 and 𝑔 : 𝑌 → 𝑀𝑍 is then given by

𝑓 𝑔

We can use these string diagrams to easily check that Kl(𝑀) is actually a category. We

use the monad laws Eq. (2.3):

𝑓

= 𝑓 =

𝑓

𝑓 𝑔 ℎ
=

𝑓 𝑔 ℎ
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Example 2.3.0.2. The Kleisli category Kl(P) of the powerset monad P is the category of

multi-valued maps. A Kleisli map 𝑓 : 𝐴 → P𝐵 assigns to each 𝑎 ∈ 𝐴 a subset 𝑓 (𝑎) ⊆ 𝐵
of possible images of 𝑎. Given another Kleisli map 𝑔 : 𝐵→ P𝐶, their composite in the

Kleisli category 𝑔P ◦ 𝑓 : 𝐴→ P𝐶 sends 𝑎 ∈ 𝐴 to the union

⋃
𝑏∈ 𝑓 (𝑎) 𝑔(𝑏). In other words,

a possible image of 𝑔 ◦ 𝑓 is any possible image of 𝑔 of any possible image of 𝑓 .

Example 2.3.0.3. The Kleisli category Kl(D) of the probability monad D is the category

of stochastic maps. A Kleisli map 𝑓 : 𝐴 → D𝐵 assigns to each 𝑎 ∈ 𝐴 a probability

distribution 𝑓 (𝑎) on 𝐵. Given another Kleisli map 𝑔 : 𝐵 → D𝐶, their composite

𝑔D ◦ 𝑓 : 𝐴 → D𝐶 in the Kleisli category sends 𝑎 to the probability distribution 𝑐 ↦→∑
𝑏∈𝐵 𝑓 (𝑎)(𝑏) · 𝑔(𝑏)(𝑐). That is, since 𝑐 is the image of 𝑎 under 𝑔 ◦ 𝑓 if there is a 𝑏 which

is the image of 𝑎 under 𝑓 and 𝑐 is the image of 𝑏 under 𝑔, the probability that 𝑐 is the

image of 𝑎 is the probability of their being such a 𝑏.

Thinking of stochastic maps as conditional probabilities, where 𝑓 : 𝐴 → D𝐵 ex-

presses the conditional probability 𝑝(𝑏 | 𝑎) = 𝑓 (𝑎)(𝑏), then we see that 𝑝(𝑐 | 𝑎) =∑
𝑏∈𝐵 𝑝(𝑏 | 𝑎)𝑝(𝑐 | 𝑏) as we expect from conditional probabilities.

Now we encompass all our non-deterministic examples in a single definition.

Definition 2.3.0.4. Let 𝑀 : C → C be a commutative monad. A (discrete-time) 𝑀-

system S, also written as (
updateS

exposeS

)
:

(
StateS

StateS

)
⇆

(
InS

OutS

)
,

is a system whose dynamics is given by a Kleisli map for 𝑀. It consists of:

• an object StateS of states;
• an object OutS of values for exposed variables, or outputs for short;

• an object InS of parameter values, or inputs for short;

• a map exposeS : StateS → OutS, the exposed variable of state or expose map, which

takes a state to the output it yields; and

• a Kleisli map updateS : StateS×InS → 𝑀StateS. This is the dynamics or update map

which takes a state and a parameter and gives the next state in a non-deterministic

way determined by 𝑀.

This will let us more swiftly describe new non-deterministic systems theories.

For example, suppose that our system is free to choose which state it transitions to

next, but there’s a catch. For any state 𝑠 and input parameter 𝑖, there will be a cost

updateS(𝑠, 𝑖)(𝑠′) ∈ [0,∞] associated to each other state 𝑠′ — the cost of transitioning
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from 𝑠 to 𝑠′ given the parameter 𝑖. A cost of 0 means that this transition is free; a cost

of∞means it is prohibitively expensive, or impossible.

Definition 2.3.0.5. We will define a monad Cost on the category of sets. We think of a

Kleisli map 𝑓 : 𝐴 → Cost(𝐵) as assiging the best-case cost of producing a 𝑏 ∈ 𝐵 from

a given 𝑎 ∈ 𝐴. For practical reasons, we assume that only finitely many 𝑏 ∈ 𝐵 are

possible (that is, have finite cost) to produce from an 𝑎 ∈ 𝐴.

• For a set 𝐴,

Cost(𝐴) B {𝑐 : 𝐴→ [0,∞] | {𝑎 ∈ 𝐴 | 𝑐(𝑎) < ∞} is finite}

is the set of cost functions 𝑐 : 𝐴→ [0,∞]which assign finite values to only finitely

many elements of 𝐴.

• For a set 𝐴, 𝜂Cost : 𝐴→ Cost(𝐴) assumes that we can only produce what we have,

but that if we already have it, it’s free. Formally:

𝜂Cost(𝑎)(𝑎′) B
{

0 if 𝑎 = 𝑎′

∞ otherwise

• For a map with cost 𝑓 : 𝐴→ Cost(𝐵), we define 𝑓 Cost
: Cost(𝐴) → Cost(𝐵) by

𝑓 Cost(𝑐)(𝑏) B min

𝑎∈𝐴
𝑐(𝑎) + 𝑓 (𝑎)(𝑏).

That is, given costs on elements of 𝐴 and conditional costs on elements of 𝐵 given

by 𝑓 , the cost of an element of 𝐵 is the cost of getting an 𝑎 ∈ 𝐴 together with the

cost of producing 𝑏 from that 𝑎. So, the best case cost of such a 𝑏 is the minimum

over all 𝑎 ∈ 𝐴 of the total cost of producing 𝑏 from 𝑎. We note that the minimum

is achieved because only finitely many of the costs are finite.

• Given sets 𝐴 and 𝐵, the cost of having an element of 𝐴 and an element of 𝐵 is the

sum of their costs.

𝜎(𝑐, 𝑐′)(𝑎, 𝑏) B 𝑐(𝑎) + 𝑐′(𝑏).

Remark 2.3.0.6. We will prove that Definition 2.3.0.5 does indeed give a commutative

monad in the upcoming Proposition 2.3.0.11.

Now we can quickly define our new sort of non-determinism.

Definition 2.3.0.7. A (discrete-time) system with costs is a Cost-system.

Example 2.3.0.8. Suppose we are trying to complete a projectProj that involves a number

of steps. Let Steps be the set of steps involved. The state of our project at any given

time is the set of steps we have completed so far: StateProj B PSteps. Now, we

may not want to show everyone exactly how our project is going, just that it has hit
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certain milestones. So we can let OutProj B Milestones be our set of milestones and

exposeProj : StateProj → OutProj send each project state to the most recent milestone

completed.

Now, in any project, there are some external conditions to be dealt with. Let

InProj = Externalities be the set of these externalities. We can assume that there is

a cost associated to choosing a next step to take which depends not only on what

steps have been completed so far but also on the current external conditions: that is,

we can assume we have a function cost : StateProj × InProj → Cost(Steps), and that

cost(𝑠, 𝑖)(𝑥) = 0 whenever 𝑥 ∈ 𝑠 is a step we have already completed.
a

Given this, we

can define the update of our project system as

updateProj(𝑠, 𝑖)(𝑠′) B
∑
𝑥∈𝑠′

cost(𝑠, 𝑖)(𝑥).

This tells us that the cost moving from having completed the steps 𝑠 to having completed

the steps 𝑠′ given external conditions 𝑖 is the sum of the cost of completing each step

in 𝑠′ which is not in 𝑠.

The crucial question we want to ask of this model is: how much will the project

cost in the best case scenario, given a sequence of external conditions? That is, we

will iterate the action of the system through the sequence of paramters starting at

∅ ∈ StateProj, and then ask the cost of Steps ∈ StateProj at the end.

a
Although one could imagine this instead as a “maintenance” cost of maintaining the completion of

that step.

We took Cost to be the monad of best case costs. Let’s show that there is also a

monad Cost
max

of worst case costs. Everything will be the same, but instead of

𝑓 Cost(𝑐)(𝑏) B min

𝑎∈𝐴
𝑐(𝑎) + 𝑓 (𝑎)(𝑏),

we will have

𝑓 Cost
max(𝑐)(𝑏) B max

𝑎∈𝐴
𝑐(𝑎) + 𝑓 (𝑎)(𝑏).

It is worth noting that this formula has a formal similarity to the following formula:

𝑓 𝑅(𝑐)(𝑏) B
∑
𝑎∈𝐴

𝑐(𝑎) · 𝑓 (𝑎)(𝑏).

which resembles matrix multiplication. This is indeed the case; for any sort of (com-

mutative) scalars, we get a monad that reproduces matrix arithmetic with those scalars.

An appropriate set of scalars is called a commutative rig.

Definition 2.3.0.9. A commutative rig (for “ring without negatives”
a
) is a set 𝑅 equipped

with a commutative monoid structure (𝑅,+, 0) and a commutative monoid structure

(𝑅, ·, 1) such that

𝑎 · (𝑏 + 𝑐) = 𝑎 · 𝑏 + 𝑎 · 𝑐
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for all 𝑎, 𝑏, 𝑐 ∈ 𝑅.

a
Rigs are also sometimes referred to as “semirings”.

Example 2.3.0.10. The following are important examples of rigs:

1. The natural numbers N with their usual addition and multiplication form a rig.

Similarly, the non-negative rationals and reals form rigs with their usual addition

and multiplication.

2. Any ring is a rig. In particular, Z, Q, and R are all rigs with their usual addition

and multiplication.

3. The tropical rigs are rigs where “addition” is actually minimum or maximum,

and “multiplication” is actually addition. In particular, the rig of best-case costs
[0,∞] is a rig with min as its addition and + as its multiplication. In this rig,

distributivity looks like

𝑎 +min{𝑏, 𝑐} = min{𝑎 + 𝑏, 𝑎 + 𝑐},

and a linear combination looks like

min

𝑖∈𝐼
𝑐𝑖 + 𝑥𝑖 .

The additive unit is∞, and the multiplicative unit is 0.

Similarly, there is a rig of worst-case costs on [0,∞] with max as addition and + as

multiplication. This rig is remarkable in that its additive and multiplicative unit

are the same; they are both 0.

4. In fact, any ordered commutative monoid (𝑀,+, 0, ≤) (where if 𝑎 ≤ 𝑏, then

𝑐 + 𝑎 ≤ 𝑐 + 𝑏) which admits joins 𝑎 ∨ 𝑏 (that is, least upper bounds) can be made

into a commutative rig with addition given by ∨ and multiplication given by +.

Proposition 2.3.0.11. For any commutative rig 𝑅, there is a commutative monad 𝑅⊗− :

Set→ Set defined by

• 𝑅 ⊗ 𝑋 is the set of 𝑅-linear combinations of elements of 𝑋.

• 𝜂 : 𝑋 → 𝑅 ⊗ 𝑋 sends 𝑥 to the linear combination ·𝑥.

• For 𝑓 : 𝑋 → 𝑅 ⊗ 𝑌, we have 𝑓 𝑅 : 𝑅 ⊗ 𝑋 → 𝑅 ⊗ 𝑌 defined by

𝑓 𝑅

(∑
𝑖

𝑟𝑖𝑥𝑖

)
=

∑
𝑖

𝑟𝑖 𝑓 (𝑥𝑖).

• For sets 𝑋 and 𝑌, we have 𝜎 : (𝑅 ⊗ 𝑋) × (𝑅 ⊗ 𝑌) → 𝑅 ⊗ (𝑋 × 𝑌) defined by

𝜎
©­«
∑
𝑖

𝑟𝑖𝑥𝑖 ,
∑
𝑗

𝑠 𝑗𝑦 𝑗
ª®¬ =

∑
𝑖

∑
𝑗

𝑟𝑖𝑠 𝑗(𝑥𝑖 , 𝑦𝑗).
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2.4 Adding rewards to non-deterministic systems

A common way to think of a discrete-time system is as a decision process. We think of

the system A as an agent who needs to make a decision. The agent can choose an action,

an element of InA, and will then transition into a new state — although it may not know

precisely which. We then ask the question: what is the best action for the agent to take

in a given situation?

Clearly, an answer to this question will depend on what it means for one action to be

better than another. The most common way to model this is by associating each action

with a real number reward. The bigger the reward, the better the action (and negative

rewards are harmful actions). If the agent is going to take a sequence of actions, we

want the rewards to accumulate so that the total reward of a sequence of actions is the

sum of each reward.

We can handle this accumulation of rewards, even in a deterministic system, with a

commutative monad.

Definition 2.4.0.1. Let (𝑅,+, 0) be a commutative monoid (such as the real numbers).

The 𝑅-valued reward monad or monad of 𝑅-actions is defined by the following data:

• To each set 𝐴, we associate the set 𝑅×𝐴 of pairs of a reward and an element of 𝐴.

• For each set𝐴, we have𝜂𝐴 : 𝐴→ 𝑅×𝐴given by yielding no reward: 𝜂𝐴(𝑎) = (0, 𝑎).
• For a function 𝑓 : 𝐴→ 𝑅 × 𝐵 which yields an element of 𝐵 and a reward, we give

the function

𝑓 𝑅 : 𝑅 × 𝐴→ 𝑅 × 𝐵

defined by 𝑓 𝑅(𝑟, 𝑎) = (𝑟 + 𝜋1 𝑓 (𝑎),𝜋2 𝑓 (𝑎)). This accumulates the reward 𝜋1 𝑓 (𝑎)
from applying 𝑓 to 𝑎 onto a current reward 𝑟

• For sets 𝐴 and 𝐵, we have

𝜎 : (𝑅 × 𝐴) × (𝑅 × 𝐵) → 𝑅 × (𝐴 × 𝐵)

given by 𝜎((𝑟, 𝑎), (𝑟′, 𝑏)) = (𝑟 + 𝑟′, (𝑎, 𝑏)). The reward for doing two actions

simultaneously is the sum of their rewards.

We remark that this works not only in the category of sets, but in any cartesian

category.

Exercise 2.4.0.2. Show that the monad of 𝑅-valued rewards is really a commuativative

monad. That is, show that the above data satisfies all each of the laws in Defini-

tion 2.1.0.5. Do you see where the commutativity comes into the mix? ♢

We can then describe a system with reward as having an update updateS : StateS ×
InS → 𝑅 × StateS which sends the current state and action to the next state together

with the reward for taking that action (in that state).
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Definition 2.4.0.3. A deterministic system with 𝑅-valued rewards is an (𝑅×−)-system

in the sense of Definition 2.3.0.4

We would really like to mix our rewards with non-determinism. In particular, when

thinking of a system as an agent making decisions with imperfect information of its

environment, we would like to use stochastic systems to model this lack of perfect

information. The agent doesn’t know exactly what will happen when it performs an

action, but it has a good idea of what will probably happen.

The reward our agent gets should depend on what state the agent actually ends

up in, and not just the action it takes. Therefore, we want to know the probability of

transitioning to a next state and getting a certain reward. This has signature

StateS × InS → D(R × StateS).

We will show that the assignment 𝐴 ↦→ D(R×𝐴) forms a commutative monad. We

will show that more generally, if 𝑀 is any commutative monad and 𝑅 any commutative

monoid, then 𝑀(𝑅 × −) is a commutative monad again. We say that we can “put the

rewards 𝑅 into the monad 𝑀”. We can do this explicitly using the map 𝜆 : 𝑅 ×𝑀𝐴→
𝑀(𝑅 × 𝐴) defined to be the composite

𝜆 B 𝑅 ×𝑀𝐴
𝜂𝑀×id

−−−−→ 𝑀𝑅 ×𝑀𝐴
𝜎𝑀−−→ 𝑀(𝑅 × 𝐴)

Intuitively, this takes a reward 𝑟 ∈ 𝑅 and a non-deterministic 𝑎 ∈ 𝑀𝐴 and gives us the

non-deterministic pair (𝑟, 𝑎).

Proposition 2.4.0.4. Let 𝑀 be a commutative monad and (𝑅,+, 0) a commutative

monoid. Then the assignment 𝐴 ↦→ 𝑀(𝑅 × 𝐴) is a commutative monad with the

following structure:

• 𝜂𝑀(𝑅×−) : 𝐴→ 𝑀(𝑅 × 𝐴) is the composite 𝐴
𝜂𝑅−→ 𝑅 × 𝐴

𝜂𝑀−−→ 𝑀(𝑅 × 𝐴).
• Given 𝑓 : 𝐴→ 𝑀(𝑅 × 𝐵), we define 𝑓 𝑀(𝑅×−) to be the following composite:

𝑀(𝑅 × 𝐴)
𝑀(𝑅× 𝑓 )
−−−−−−→ 𝑀(𝑅 ×𝑀(𝑅 × 𝐵)) 𝑀𝜆−−→ 𝑀𝑀(𝑅 × 𝑅 × 𝐵)

𝜇𝑀

−−→ 𝑀(𝑅 × 𝑅 × 𝐵)
𝑀𝜇𝑅

−−−→ 𝑀(𝑅 × 𝐵).

Intuitively, this takes a non-deterministic pair (𝑟, 𝑎) and, gets the non-deterministic

pair 𝑓 (𝑎) = ( 𝑓1(𝑎), 𝑓2(𝑎)), and then returns the non-deterministic pair (𝑟+ 𝑓1(𝑎), 𝑓2(𝑎)).
• Given sets𝐴 and 𝐵, we define 𝜎𝑀(𝑅×−) : 𝑀(𝑅×𝐴) → 𝑀(𝑅×𝐵) to be the composite

𝑀(𝑅 × 𝐴) 𝑀−→ (𝑅 × 𝐵) 𝜎𝑀−−→ 𝑀((𝑅 × 𝐴) × (𝑅 × 𝐵)) 𝑀𝜎𝑅−−−→ 𝑀(𝑅 × 𝐴 × 𝐵).

Proof. It is not obvious that this will satsify the monad laws, but it is a rather straight-

forward check using the laws of 𝑀 and 𝑅 × −. We will not prove this result explicitly.

However, we will give a slick proof for experts.
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A monad structure on 𝑀(𝑅×𝐴) arising via a distributive law such as 𝜆 : 𝑅×𝑀𝐴→
𝑀(𝑅×𝐴) is equivalent to a lift of the monad𝑀 to the category of𝑅×− algebras — that is,

the category of 𝑅-actions. But𝑀 : C→ C is a commutative monad, and so in particular

it is a symmetric monoidal functor; therefore, it preserves commutative monoids and

their actions. For this reason, 𝑀 extends to the category of (𝑅 × −)-algebras, giving

us the desired monad structure on 𝑀(𝑅 × −). This is again commutative as it is the

composite of monoidal functors and so also monoidal. □

Example 2.4.0.5. Let’s see what this general theorem looks like in the case that 𝑅 = R

and 𝑀 = D. In this case, 𝜆 : R×D𝐴→ D(R×𝐴) sends the pair (𝑟, 𝑝) of a reward and a

probability distribution and yields the probability distribution 𝛿𝑟𝑝. Let’s see how this

lets us iterate the dynamics of a D(R × −)-system S. We have updateS : StateS × InS →
D(R × StateS), giving us a probabilities updateS(𝑠, 𝑖)(𝑟, 𝑠′) of transitioning from state 𝑠

on action 𝑖 into state 𝑠′ and receiving reward 𝑟. To iterate this, we form the composite

D(R × StateS) × InS
𝜎◦(id×𝜂)
−−−−−−→ D(R × StateS × InS)

update
D(R×−)
S−−−−−−−−−→ D(R × StateS)

which sends a pair (𝑝, 𝑖) of a prior probability distribution on states and an an action to

the distribution (𝑟, 𝑠) ↦→ ∑
𝑠′∈StateS 𝑝(𝑠′)updateS(𝑠′, 𝑖)(𝑟, 𝑠) which gives the probability

of receiving the reward 𝑟 and transitioning into the state 𝑠 conditioned upon the prior

𝑝. To iterate, we can continually apply this map to many inputs; let’s just do 𝑖 and 𝑗.

Then we end up with the distribution

(𝑟, 𝑠) ↦→
∑

𝑠′′∈StateS

∑
𝑠′∈StateS

∑
𝑟′′+𝑟′=𝑟

𝑝(𝑠) · updateS(𝑠′′, 𝑖)(𝑟′′, 𝑠′) · updateS(𝑠′, 𝑗)(𝑟′, 𝑠)

which is the probability that we transition to 𝑠 in two steps and receive a cumulative

reward of 𝑟.

2.5 Changing the flavor of non-determinism: Monad maps

In the same way that 0 is a number — or that commutative rings are non-commutative

rings — deterministic systems are non-deterministic systems, just with a trivial sort of

non-determinism. Deterministic systems are 𝑀-systems for the identity monad id(𝑋) =
𝑋. No matter what kind of non-determinism we are considering, we can always

consider a deterministic system as a non-deterministic system, because we can take the

update : State× In → State and post compose by 𝜂 : State → 𝑀State. This operation of

turning a deterministic system into an𝑀-system has a few nice properties; for example,

if we iterate the system and then turn it into an 𝑀-system, we get the same result as if

we had iterated it as an 𝑀-system.

In general, if we have a commutative monad map 𝑀 → 𝑁 , then we can turn

𝑀-systems into 𝑁-systems.
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Definition 2.5.0.1. A commutative monad map 𝜙 : 𝑀 → 𝑁 is a natural transformation

for which the following diagrams commute:

•

𝐴 𝑀𝐴

𝑁𝐴

𝜂𝑀

𝜂𝑁
𝜙 (2.11)

•

𝑀2𝐴 𝑁2𝐴

𝑀𝐴 𝑁𝐴

𝑀𝜙#𝜙

𝜇𝑀 𝜇𝑁

𝜙

(2.12)

•

𝑀𝐴 ×𝑀𝐵 𝑁𝐴 × 𝑁𝐵

𝑀(𝐴 × 𝐵) 𝑁(𝐴 × 𝐵)

𝜙×𝜙

𝜎𝑀 𝜎𝑁

𝜙

(2.13)

Proposition 2.5.0.2. There is a unique commutative monad map id → 𝑀, and it is

given by 𝜂𝑀 .

Proof. Let 𝜙 be such a map. Then condition Eq. (2.11) says precisely that 𝜙 = 𝜂𝑀 . So it

just remains to check that 𝜂 is a commutative monad map. Now, Eq. (2.11) commutes

trivially, and Eq. (2.12) is in this case one of the diagrams defining 𝑀 from Eq. (2.3).

Finally, Eq. (2.13) is in this case Eq. (2.7). □

We can then turn any deterministic system S into an 𝑀-system by defining its new

update to be 𝜂𝑀 ◦ updateS. For possibilistic systems, this says that only the state that S

actually transitions into is possible. For stochastic systems, this says that the probability

that the system transitions into the state it actually transitions into is 1.

Intuitively, stochastic non-determinism is a refinement of possibilistic non-determinism:

it not only tells us what is possible, but how likely it is. We can package this intuition

into a commutative monad morphism 𝜙 : D→ P.

Proposition 2.5.0.3. There is a commutative monad morphism 𝜙 : D → P given by

sending a probability distribution to the set of elements with non-zero probability:

𝜙(𝑝) = {𝑎 ∈ 𝐴 | 𝑝(𝑎) ≠ 0}.

Proof. We check that this satisfies the laws.

• (Eq. (2.11)) The only element which 𝛿𝑎 assigns a non-zero probability is 𝑎.
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• (Eq. (2.12)) Given a formal convex combination

∑
𝑖 𝜆𝑖𝑝𝑖 of probability distributions

𝑝𝑖 ∈ D𝐴, we see that

𝜙𝜇D

(∑
𝑖

𝜆𝑖𝑝𝑖

)
= {𝑎 ∈ 𝐴 |

∑
𝑖

𝜆𝑖𝑝𝑖(𝑎) ≠ 0},

while

D𝜙

(∑
𝑖

𝜆𝑖𝑝𝑖

)
=

∑
𝑖

𝜆𝑖{𝑎 ∈ 𝐴 | 𝑝𝑖(𝑎) ≠ 0}

and so taking 𝜙 of that yields

{{𝑎 ∈ 𝐴 | 𝑝𝑖(𝑎) ≠ 0} | 𝜆𝑖 ≠ 0}

so, finally

𝜇P

(
𝜙D𝜙

(∑
𝑖

𝜆𝑖𝑝𝑖

))
=

⋃
𝜆𝑖≠0

{𝑎 ∈ 𝐴 | 𝑝𝑖(𝑎) ≠ 0}.

Both paths around the square are equal since all of the 𝜆𝑖 and 𝑝𝑖(𝑎) are positive.

• (Eq. (2.13)) Let 𝑝 be a probability distribution on𝐴 and 𝑞 a probability distribution

on 𝐵. Then

𝜙(𝜎(𝑝, 𝑞)) = {(𝑎, 𝑏) | 𝑝(𝑎)𝑞(𝑏) ≠ 0}

while

𝜎(𝜙(𝑝), 𝜙(𝑞)) = {(𝑎, 𝑏) | 𝑝(𝑎) ≠ 0 𝑞(𝑏) ≠ 0}.

These are equal since 𝑝(𝑎)𝑞(𝑏) ≠ 0 if and only if both 𝑝(𝑎) and 𝑞(𝑏) are not 0.

□

This lets us turn a stochastic system into a possibilistic system, saying that a transi-

tion is possible if it has non-zero probability.

Exercise 2.5.0.4. Show that D𝜂R : D𝐴→ D(R×𝐴) is a commutative monad morphism.

That is, show that the following diagrams commute:

1.

𝐴 D𝐴

D(R × 𝐴)

𝜂D

𝜂
D(R×−)

D(𝜂R) (2.14)

2.

D
2𝐴 D(R ×D(R × 𝐴))

D𝐴 D(R × 𝐴)

DD𝜂R#D𝜂R

𝜇D 𝜇D(R×−)

D𝜂R

(2.15)
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3.

D𝐴 ×D𝐵 D(R × 𝐴) ×D(R × 𝐵)

D(𝐴 × 𝐵) D(R × 𝐴 × 𝐵)

D𝜂R×D𝜂R

𝜎D 𝜎D(R×−)

D𝜂R

(2.16)

This shows that we can always consider a stochastic system as a stochastic system with

rewards by assigning every transition the reward 0. ♢

The reason we need all the laws for the monad morphism and not just an arbitrary

family of maps 𝜙 : 𝑀𝐴 → 𝑁𝐴 is that with these laws, we get functors Kl(𝑀) →
Kl(𝑁) which tell us that iterating and then changing our non-determinism is the

same as changing our non-determinism and then iterating. We begin with a useful

lemma.

Lemma 2.5.0.5. In the definition of a commutative monad map 𝜙 : 𝑀 → 𝑁 , the

commutativity of diagram Eq. (2.12) can be replaced by the commutativity of the

following diagram for any 𝑓 : 𝐴→ 𝑀𝐵:

𝑀𝐴 𝑁𝐴

𝑀𝐵 𝑁𝐵

𝜙

𝑓𝑀 ( 𝑓 #𝜙)𝑁

𝜙

(2.17)

That is,

𝑓 𝑀 # 𝜙 = 𝜙 # ( 𝑓 # 𝜙)𝑁 .

In do notation, this reads

𝜙
©­­­«

do
𝑥 ← 𝑚

𝑓 (𝑥)

ª®®®¬ =

do
𝑥 ← 𝜙(𝑚)
𝜙( 𝑓 (𝑥))

Proof. Before we begin, we note that, by the naturality of 𝜙, 𝑀𝜙 # 𝜙 = 𝜙 # 𝑁𝜙:

𝑀2𝐴 𝑁𝑀𝐴

𝑀𝑁𝐴 𝑁2𝐴

𝜙𝑀𝐴

𝑀𝜙𝐴 𝑁𝜙𝐴

𝜙𝑁𝐴

That is, we can take the top of Eq. (2.12) to be 𝜙 # 𝑁𝜙 rather than 𝑀𝜙 # 𝜙.

We recall that 𝑓 𝑀 = 𝑀 𝑓 # 𝜇𝑀 , and similarly ( 𝑓 # 𝜙)𝑁 = 𝑁( 𝑓 # 𝜙) # 𝜇𝑁 . So we may
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rewrite Eq. (2.17) as the solid outer diagram in

𝑀𝐴 𝑁𝐴

𝑀2𝐵 𝑁2𝐵

𝑀𝐵 𝑁𝐵

𝜙

𝑀 𝑓 𝑁 𝑓 #𝑁𝜙

𝜇𝑀

𝜙#𝑁𝜙

𝜇𝑁

𝜙

(2.18)

Now we are ready to prove our lemma. We note that the top square in this diagram

always commutes by the naturality of 𝜙. Eq. (2.12) is the lower square in this diagram;

so, if it commutes, then the outer square (which is Eq. (2.17)) commutes. On the other

hand, if Eq. (2.17) commmutes for all 𝑓 : 𝐴 → 𝑀𝐵, we may take 𝑓 = id : 𝑀𝐴 → 𝑀𝐴

to find that the outer square of Eq. (2.18) becomes just Eq. (2.12). □

Proposition 2.5.0.6. Let 𝜙 : 𝑀 → 𝑁 be a commutative monad morhpisms. Then there

is a strict symmetric monoidal functor

𝜙∗ : Kl(𝑀) → Kl(𝑁)

acting as the identity on objects and sending the Kleisli map 𝑓 : 𝐴 → 𝑀𝐵 to the

composite

𝜙∗ 𝑓 B 𝐴
𝑓
−→ 𝑀𝐵

𝜙
−→ 𝑁𝐵.

Proof. We will check that this is a functor; that it is strictly symmetric monoidal follows

from this and from the fact that it acts as the identity on objects. The identity 𝜂𝑀 : 𝐴→
𝑀𝐴 in Kl(𝑀) gets sent to 𝜙∗𝜂𝑀 = 𝜂𝑀 # 𝜙. This equals 𝜂𝑁 : 𝐴→ 𝑁𝐴 by Eq. (2.11).

Given 𝑓 : 𝐴→ 𝑀𝐵 and 𝑔 : 𝐵→ 𝑀𝐶, their composite is 𝑓 # 𝑔𝑀 : 𝐴→ 𝑀𝐶, so that

𝜙∗( 𝑓 # 𝑔𝑀) B 𝑓 # 𝑔𝑀 # 𝜙

= 𝑓 # 𝜙 # (𝑔 # 𝜙)𝑁 by Lemma 2.5.0.5

= (𝜙∗ 𝑓 )(𝜙∗𝑔)𝑁 .

□

We can also check that 𝜙∗ is a functor using our string diagram notation for monads.

In that notation, 𝜙 : 𝑀 → 𝑁 is written as

𝜙

and would satisfy the laws:

𝜙 =
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𝜙 =

𝜙

𝜙

(As before, these diagrams are not really equipped to describe the commutativity of

monads, and so we are only using the laws concerning the unit and multiplication.)

The action of 𝜙∗ on a Kleisli map 𝑓 : 𝑋 → 𝑀𝑌 is then written as

𝑓

𝜙

We can check that 𝜙∗ is functorial quickly and diagrammatically:

𝜙 =

𝑓 𝑔

𝜙
=

𝑓

𝜙

𝑔

𝜙

2.6 Wiring together non-deterministic systems: the
generalized lens construction

Consider a stochastic source process

Source

We can imagine, as Claude Shannon did, that this source is an interlocutor commu-

nicating over a wire. Suppose we have another interlocutor who reads the signal

generated by our source and generates their own signal in repsonse:

Transformer

Having these two models, we can form a new stochastic source by considering them

together:

Source 𝜌 Transformer

We imagine that the Transformer listens to the signal generated by the Source, but with

noise 𝜌 on the wire. This wiring diagram

𝜌𝐴 𝐶𝐵
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can be described as a monadic lens
(
𝑓 ♯

𝑓

)
:

(
𝐵

𝐴×𝐶

)
⇆

(
1
𝐶

)
:

• 𝑓 : 𝐴 × 𝐶 → 𝐶 is the projection 𝜋2.

• 𝑓 ♯ : 𝐴 × 𝐶 × 1 → 𝐷𝐵 is 𝜌 ◦ 𝜋1 where 𝜌 : 𝐴 → 𝐷𝐵 is the stochastic function

describing the noise on the wire.

This new notion of monadic lens which lets us wire together non-deterministic systems

will be the focus of this section.

In Section 1.3, we saw how to wire together systems deterministically, and using

functions from an algebraic theory on the wire. This worked because wiring diagrams

could be interpreted as lenses, and deterministic and differential systems were also

lenses; then we could just compose them.

But non-deterministic systems are not lenses in a cartesian category; they have that

monad sitting over the states in the codomain of update:

updateS : StateS × InS → 𝑀StateS.

It may appear that we could consider this as a map in the Kleisli category, and just take

lenses in the Kleisli category. But in the Kleisli category, the operation × is rarely a

cartesian product, and we can only describe lenses in cartesian categories. The reason

we can only describe lenses in cartesian categories is because in the formula for the

passback of a composite of lenses, we use a variable twice; that is, we use the diagonal

map Δ : 𝐴+ → 𝐴+ × 𝐴+, a feature of cartesian categories.

We will need a new perspective on lenses and lens composition which suggests how

to change the passback of the lenses. It is worth noting that we only need to duplicate

in the passforward direction; we should be free to change the passback direction.

In this section, we will give a new perspective on the category of lenses using the

Grothendieck construction. This perspective constructs the category of lenses out of an

indexed category Ctx− : Cop → Cat of objects of the cartesian category C in context. This

construction works for any indxed category A : Cop → Cat, which lets us define a

notion of A-lenses using any indexed category. By choosing an appropriate indexed

category, we will arrive at the notion of𝑀-lenses for a commutative monad𝑀; this will

give us the wiring diagram calculus for non-deterministic systems that we wanted.

First, we introduce the abstract categorical notions of indexed category and the

Grothendieck construction.

2.6.1 Indexed categories and the Grothendieck construction

An indexed category A : Cop → Cat is a family of categories A(𝐶) that varies functo-

rially with an object 𝐶 ∈ C of the base category C. We will intepret the base category

C as the category of passforward maps, and the categories A(𝐶+) as the categories of

passback maps that take 𝐶+ as an extra argument.
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Definition 2.6.1.1. A strict indexed category A : Cop → Cat is a contravariant functor.

We call the category C the base of the indexed category A. Explicitly, an indexed

category A has:

• A base category C.

• For every object 𝐶 ∈ C of the base, a category A(𝐶).
• For every map 𝑓 : 𝐶 → 𝐶′ in the base, a pullback functor 𝑓 ∗ : A(𝐶′) → A(𝐶),

which we think of as “reindexing” the objects of A(𝐶′) so that they live over

A(𝐶).
• Reindexing is functorial: ( 𝑓 # 𝑔)∗ = 𝑔∗ # 𝑓 ∗ and id

∗
= id.

Remark 2.6.1.2. We have given the definition of a strict indexed category. A general

indexed category is a pseudo-functor A : Cop → Cat, which is like a functor but

functoriality only holds up to coherent isomorphism. As in the case of monoidal

categories, the coherences in the isomorphisms are often just bookkeeping trivialities.

However, the theory of strict indexed categories is noticeably easier, and most of

our examples will be strict. Since we will mostly be using strict indexed categories, we

will often refer to them simply as “indexed categories”.

Indexed categories are quite common throughout mathematics. We will construct

a particular example for our own purposes in Section 2.6.2, and more throughout the

book.

Example 2.6.1.3. Recall that a dependent set is a function 𝑋 : 𝐴→ Set from a set into the

category of sets. We have an indexed category of dependent sets

Set(−) : Setop → Cat

which is defined as follows:

• To each set 𝐴, we assign the category Set𝐴 of sets indexed by 𝐴. The objects of

Set𝐴 are the sets 𝑋 : 𝐴 → Set indexed by 𝐴, and a map 𝑓 : 𝑋 → 𝑌 is a family

of maps 𝑓𝑎 : 𝑋𝑎 → 𝑌𝑎 indexed by the elements 𝑎 ∈ 𝐴. Composition is given

componentwise: ( 𝑓 # 𝑔)𝑎 = 𝑓𝑎 # 𝑔𝑎 .
• To every function 𝑓 : 𝐴′→ 𝐴, we get a reindexing functor

𝑓 ∗ : Set𝐴 → Set𝐴′

Given by precomposition: 𝑋 ↦→ 𝑋 ◦ 𝑓 . The indexed set 𝑋 ◦ 𝑓 : 𝐴′→ Set is the set

𝑋 𝑓 (𝑎′) on the index 𝑎′ ∈ 𝐴′. The families of functions get reindexed the same way.

• Since our reindexing is just given by precomposition, it is clearly functorial.

We will return to this example in much greater detail in Chapter 4.

If we have an family of sets 𝐴 : 𝐼 → Set indexed by a set 𝐼, we can form the disjoint

union

∑
𝑖∈𝐼 𝐴𝑖 , together with the projection 𝜋 :

∑
𝑖∈𝐼 𝐴𝑖 → 𝐼 sending each 𝑎 ∈ 𝐴𝑖 to
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𝑖. The Grothendieck construction is a generalization of this construction to indexed

categories. Namely, we will take an indexed category A : C → Cat and form a new

category ∫ 𝐶:C

A(𝐶)

which we think of as a “union” of all the categories A(𝐶). But this “union” will not

be disjoint since there will be morphisms from objects in A(𝐶) to objects in A(𝐶′).
This is why we use the integral notation; we want to suggest that the Grothendieck

construction is a sort of sum.2

Definition 2.6.1.4. Let A : Cop → Cat be an indexed category. The Grothendieck
construction of A ∫ 𝐶:C

A(𝐶)

is the category with:

• Objects pairs

(
𝐴
𝐶

)
of objects 𝐶 ∈ C and 𝐴 ∈ A(𝐶). We say that 𝐴 “sits over” 𝐶.

• Maps

(
𝑓♭
𝑓

)
:

(
𝐴
𝐶

)
⇒

(
𝐴′

𝐶′

)
pairs of 𝑓 : 𝐶 → 𝐶′ in C and 𝑓♭ : 𝐴→ 𝑓 ∗𝐴′ in A(𝐶).

• Given

(
𝑓♭
𝑓

)
:

(
𝐴
𝐶

)
⇒

(
𝐴′

𝐶′

)
and

(
𝑔♭
𝑔

)
:

(
𝐴′

𝐶′

)
⇒

(
𝐴′′

𝐶′′

)
, their composite is given by(

𝑓♭

𝑓

)
#

(
𝑔♭

𝑔

)
B

(
𝑓♭ # 𝑓 ∗𝑔♭
𝑓 # 𝑔

)
Written with the signatures, this looks like

©­«
𝐴

𝑓♭−→ 𝑓 ∗𝐴′
𝑓 ∗𝑔♭−−−→ 𝑓 ∗𝑔∗𝐴′′ == ( 𝑓 # 𝑔)∗𝐴′′

𝐶
𝑓
−→ 𝐶′

𝑔
−→ 𝐶′′

ª®¬
• The identity is given by

(
id𝐴

id𝐶

)
:

(
𝐴
𝐶

)
⇒

(
𝐴
𝐶

)

Exercise 2.6.1.5. Check that Definition 2.6.1.4 does indeed make

∫ 𝐶:C
A(𝐶) into a

category. That is, check that composition as defined above is associative and unital.

♢

Pure and cartesian maps. A map in a Grothendieck construction is a pair

(
𝑓♭
𝑓

)
:(

𝐴
𝐶

)
⇒

(
𝐴′

𝐶′

)
of maps 𝑓 : 𝐶 → 𝐶′ and 𝑓♭ : 𝐴→ 𝑓 ∗𝐴′. It is not too hard to see that a map

2
The Grothendieck construction is an example of a lax colimit in 2-category theory, another sense in

which it is a ‘sort of sum’.
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is an isomorphism in a Grothendieck construction if and only if both its constituent

maps are isomorphisms in their respective categories.

Proposition 2.6.1.6. Let A : Cop → Cat be an indexed category and let

(
𝑓♭
𝑓

)
:

(
𝐴
𝐶

)
⇒(

𝐴′

𝐶′

)
be a map in its Grothendieck construction. Then

(
𝑓♭
𝑓

)
is an isomorphism if and

only if 𝑓 is an isomorphism in C and 𝑓♭ is an isomorphism in A(𝐶).

Proof. First, let’s show that if both 𝑓 and 𝑓♭ are isomorphisms, then

(
𝑓♭
𝑓

)
is an iso-

morphism. We then have 𝑓 −1
: 𝐶′ → 𝐶 and 𝑓 −1

♭
: 𝑓 ∗𝐴′ → 𝐴. From 𝑓 −1

♭
, we can

form ( 𝑓 −1)∗( 𝑓 −1

♭
) : ( 𝑓 −1)∗ 𝑓 ∗𝐴′ → ( 𝑓 −1)∗𝐴, which has signature 𝐴′ → ( 𝑓 −1)∗𝐴 because

𝑓 −1 # 𝑓 = id:

𝐴′ == ( 𝑓 −1 # 𝑓 )∗𝐴′ == ( 𝑓 −1)∗ 𝑓 ∗𝐴′
( 𝑓 −1)∗( 𝑓 −1

♭
)

−−−−−−−−→ ( 𝑓 −1)∗𝐴.

Now, consider the map

(
( 𝑓 −1)∗ 𝑓 −1

♭

𝑓 −1

)
:

(
𝐴′

𝐶′

)
⇒

(
𝐴
𝐶

)
. We’ll show that this is an inverse to(

𝑓♭
𝑓

)
. Certainly, the bottom components will work out; we just need to worry about the

top. That is, we need to show that 𝑓 ∗(( 𝑓 −1)∗ 𝑓 −1

♭
)◦ 𝑓♭ = id and ( 𝑓 −1)∗( 𝑓♭)◦( 𝑓 −1)∗( 𝑓 −1

♭
) = id.

Both of these follow quickly by functoriality.

On the other hand, suppose that

(
𝑓♭
𝑓

)
is an isomorphism with inverse

(
𝑔♭
𝑔

)
. Then

𝑔 𝑓 = id and 𝑓 𝑔 = id, so 𝑓 is an isomorphism. We can focus on 𝑓♭. We know that

𝑓 ∗𝑔♭ ◦ 𝑓♭ = id and 𝑔∗ 𝑓♭ ◦ 𝑔♭ = id. Applying 𝑓 ∗ to the second equation, we find that

𝑓♭ ◦ 𝑓 ∗𝑔♭ = id, so that 𝑓♭ is an isomorphism with inverse 𝑓 ∗𝑔♭. □

This proposition suggests two interesting classes of maps in a Grothendieck con-

struction: the maps

(
𝑓♭
𝑓

)
for which 𝑓 is an isomorphism, and those for which 𝑓♭ is an

isomorphism.

Definition 2.6.1.7. Let A : Cop → Cat be an indexed category and let

(
𝑓♭
𝑓

)
be a map in

its Grothendieck construction. We say that

(
𝑓♭
𝑓

)
is

• pure if 𝑓 is an isomorphism, and

• cartesian if 𝑓♭ is an isomorphism.

The pure maps correspond essentially to the maps in the categories A(𝐶) at a given

index 𝐶, while the cartesian maps correspond essentially to the maps in C.

Remark 2.6.1.8. The name “pure” is non-standard. The usual name is “vertical”. But

we are about to talk about “vertical” maps in a technical sense when we come to double

categories, so we’ve renamed the concept here to avoid confusion later.

Example 2.6.1.9. We have often seen systems that expose their entire state, like Time of

Example 3.3.0.7. We will soon see that lenses are maps in a Grothendieck construction.
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Considered as lenses, these systems are pure in the sense that their expose function is

an isomorphism.

Exercise 2.6.1.10. Let

(
𝑓♭
𝑓

)
and

(
𝑔♭
𝑔

)
be composable maps in a Grothendieck construc-

tion,

1. Suppose that

(
𝑔♭
𝑔

)
is cartesian. Show that

(
𝑓♭
𝑓

)
is cartesian if and only if their

composite is cartesian. Is the same true for pure maps?

2. Suppose that

(
𝑓♭
𝑓

)
is pure. Show that

(
𝑔♭
𝑔

)
is pure if and only if their composite

is pure. Is the same true for cartesian maps?

♢

2.6.2 Maps with context and lenses

In this section, we’ll see the category LensC of lenses in a cartesian category C can

be described using the Grothendieck construction. To do this, we need some other

categories named after their maps (rather than their objects): category of maps with
context 𝐶 for some a given 𝐶 ∈ C.

Definition 2.6.2.1. Let C be a cartesian category and let 𝐶 ∈ C. The category Ctx𝐶 of
maps with context 𝐶 is the category defined by:

• Objects are the objects of C.

• Maps 𝑓 : 𝑋 ⇝ 𝑌 are maps 𝑓 : 𝐶 × 𝑋 → 𝑌.

• The composite 𝑔 ◦ 𝑓 of 𝑓 : 𝑋 ⇝ 𝑌 and 𝑔 : 𝑌⇝ 𝑍 is the map

(𝑐, 𝑥) ↦→ 𝑔(𝑐, 𝑓 (𝑐, 𝑥)) : 𝐶 × 𝑋 → 𝑍.

Diagrammatically, this is the composite:

𝐶 × 𝑋 Δ𝐶×𝑋−−−−→ 𝐶 × 𝐶 × 𝑋
𝐶× 𝑓
−−−→ 𝐶 × 𝑌

𝑔
−→ 𝑍.

• The identity id : 𝑋 ⇝ 𝑋 is the second projection 𝜋2 : 𝐶 × 𝑋 → 𝑋.

We can prove that Ctx𝐶 is a category using a similar string diagrams to those we

used in Section 2.3. We have a functor 𝑋 ↦→ 𝐶 × 𝑋 : C → C which we can draw as a

blue string:

If we represent 𝑋 ∈ C by the string then we represent 𝐶 × 𝑋 as

We can therefore represent a morphism 𝑓 : 𝐶 × 𝑋 → 𝑌 in the context of 𝐶 as a bead

like this:

𝑓
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To compose maps in context, we need the diagonal map Δ𝐶 × 𝑋 : 𝐶 × 𝑋 → 𝐶 × 𝐶 × 𝑋
and the second projection 𝜋2 : 𝐶 × 𝑋 → 𝑋. Since these maps are natural in 𝑋, we can

draw them as

and

Then the composition in Ctx𝐶 of maps in context 𝑓 : 𝐶 × 𝑋 → 𝑌 and 𝑔 : 𝐶 × 𝑌 → 𝑍 is

drawn as:

𝑔𝑓

and the second projection 𝜋2 : 𝐶 × 𝑋 → 𝑋 is drawn

This is exactly dual to the story about Kleisli composition we saw in Section 2.3! To

show that Ctx𝐶 is a category, we need to note that the following equations hold:

=

=

These say that

(Δ𝐶 × 𝑋) # (𝜋2 × 𝑋) = id𝐶×𝑋 = (Δ𝐶 × 𝑋) # (𝐶 × 𝜋2)

and

(Δ𝐶 × 𝑋) # (𝐶 × Δ𝐶 × 𝑋) = (Δ𝐶 × 𝑋) # (Δ𝐶 × 𝑋 × 𝐶).

These hold by some simple work in the cartesian category C (see Exercise 2.6.2.2). On

elements, the first says that the composite 𝑥 ↦→ (𝑥, 0) ↦→ 𝑥 and 𝑥 ↦→ (0, 𝑥) ↦→ 𝑥 are

both the identity function 𝑥 ↦→ 𝑥. The second says that 𝑥 ↦→ (𝑥, 𝑥) ↦→ ((𝑥, 𝑥), 𝑥) equals

𝑥 ↦→ (𝑥, 𝑥) ↦→ (𝑥, (𝑥, 𝑥)), at least when we forget about the inner parentheses.

With these laws in hand, we can prove associativity and identity of composition in

Ctx𝐶 by appealing to the following diagrams:

𝑓

= 𝑓 =

𝑓

ℎ𝑔𝑓

=

ℎ𝑔𝑓
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Exercise 2.6.2.2. Show that the following composites are equal in any cartesian cate-

gory:

1.

(Δ𝐶 × 𝑋) # (𝜋2 × 𝑋) = (Δ𝐶 × 𝑋) # (𝐶 × 𝜋2)

These are both maps 𝐶 × 𝑋 → 𝐶 × 𝐶 × 𝐶 × 𝑋.

2.

(Δ𝐶 × 𝑋) # (𝐶 × Δ𝐶 × 𝑋) = id𝐶×𝑋 = (Δ𝐶 × 𝑋) # (Δ𝐶 × 𝑋 × 𝐶).

These are all maps 𝐶 × 𝑋 → 𝐶 × 𝑋.

♢

Exercise 2.6.2.3. Show that Ctx1 is equivalent to the underlying cartesian category C.

In other words, maps in the context 1 have “no context”. ♢

Together, we can arrange the categories of maps with context into an indexed cate-

gory.

Definition 2.6.2.4. The indexed category of maps with context

Ctx− : Cop → Cat

is defined by:

• For 𝐶 ∈ C, we have the category Ctx𝐶 of maps with context 𝐶.

• For a map 𝑟 : 𝐶′→ 𝐶, we get a reindexing functor

𝑟∗ : Ctx𝐶 → Ctx𝐶′

given by sending each object to itself, but each morphism 𝑓 : 𝐶 × 𝑋 → 𝑌 in Ctx𝐶
to the map 𝑟∗ 𝑓 B 𝑓 ◦ (𝑟 × 𝑋):

𝐶′ × 𝑋 𝑟×𝑋−−−→ 𝐶 × 𝑋
𝑓
−→ 𝑌.

On elements,

𝑟∗ 𝑓 (𝑐′, 𝑥) B 𝑓 (𝑟(𝑐′), 𝑥).

We note that this is evidently functorial.

To see that to every 𝑟 : 𝐶′→ 𝐶 we get a functor 𝑟∗ : Ctx𝐶 → Ctx𝐶′, we can use string

diagrams. We can draw 𝑟 as

𝑟

so that the action of 𝑟∗ is given by

𝑓

𝑟



2.6. WIRING TOGETHER NON-DETERMINISTIC SYSTEMS 83

If we note that 𝑟 satisfies the following laws:

𝑟 =

𝑟 =
𝑟

𝑟

we can then prove that 𝑟∗ is a functor graphically:

𝑟
=

𝑔𝑓

𝑟

=

𝑔

𝑟

𝑓

𝑟

Those laws mean that 𝑥 ↦→ 𝑟(𝑥) ↦→ 0 is equal to 𝑥 ↦→ 0 and 𝑥 ↦→ 𝑟(𝑥) ↦→ (𝑟(𝑥), 𝑟(𝑥))
equals 𝑥 ↦→ (𝑥, 𝑥) ↦→ (𝑟(𝑥), 𝑟(𝑥)).

Proposition 2.6.2.5. The category LensC of lenses inC is the Grothendieck construction

of the indexed category of opposites of the categories of maps with context:

LensC =

∫ 𝐶∈C
Ctxop

𝐶
.

Proof. We will expand the definition of the right hand side and see that it is precisely

the category of lenses.

The objects of

∫ 𝐶∈Set Ctxop

𝐶
are pairs

(
𝐴−

𝐴+

)
of objects of C. All good so far.

A map in

∫ 𝐶∈C Ctxop

𝐶
is a pair

(
𝑓 ♯

𝑓

)
with 𝑓 : 𝐴+ → 𝐵+ and 𝑓 ♯ : 𝐴−⇝ 𝑓 ∗𝐵− in Ctxop

𝐴+ .

Now, 𝑓 ∗𝐵− = 𝐵− so 𝑓 ♯ has signature 𝐴−⇝ 𝐵− in Ctxop

𝐴+ , which means 𝑓 ♯ has signature

𝐵−⇝ 𝐴− in Ctx𝐴+ , which means that 𝑓 ♯ is a really a function 𝐴+ × 𝐵− → 𝐴−. In other

words, a map in

∫ 𝐶∈Set Ctxop

𝐶
is precisely a lens. We note that the identity map is the

identity lens.

Finally, we need to check that composition in

∫ 𝐶∈C Ctxop

𝐶
is lens composition. Sup-

pose that

(
𝑓 ♯

𝑓

)
:

(
𝐴−

𝐴+

)
⇆

(
𝐵−

𝐵+

)
and

(
𝑔♯

𝑔

)
:

(
𝐵−

𝐵+

)
⇆

(
𝐶−

𝐶+

)
are lenses. In

∫ 𝐶∈Set Ctxop

𝐶
,

their composite is (
𝑓 ∗𝑔♯ ◦ 𝑓 ♯

𝑔 ◦ 𝑓

)
.

The bottom is all good, we just need to check that the top — which, remember, lives

in Ctxop

𝐴+ — is correct. Since the composite up top is in the opposite, we are really

calculating 𝑓 ♯ ◦ 𝑓 ∗𝑔♯
in Ctx𝐴+ . By definition, this is

(𝑎+ , 𝑐−) ↦→ 𝑓 ♯(𝑎+ , 𝑔♯( 𝑓 (𝑎+), 𝑐−))

which is precisely their composite as lenses! □
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Exercise 2.6.2.6. Make sure you really understand Proposition 2.6.2.5. ♢

We take Proposition 2.6.2.5 as paradigmatic of the notion of lens, and use this idea

to define lenses from any indexed category.

Definition 2.6.2.7. Let A : Cop → Cat be an indexed category. The category of A-

lenses is the Grothendieck construction of Aop
:

LensA =

∫ 𝐶∈C
A(𝐶)op.

Example 2.6.2.8. Recall the indexed category Set(−) : Setop → Cat of dependent sets

from Example 2.6.1.3. A Set(−)-lens

(
𝑓 ♯

𝑓

)
:

(
𝐴−𝑎
𝑎∈𝐴+

)
⇆

(
𝐵−
𝑏

𝑏∈𝐵+
)

consists of

• A passforward function 𝑓 : 𝐴+ → 𝐵+, and

• A family of passback functions 𝑓
♯
𝑎 : 𝐵− → 𝐴− for every 𝑎 ∈ 𝐴+.

We call these dependent lenses.

2.6.3 Monoidal indexed categories and the product of lenses

To describe wiring diagrams, it is not enough just to have the category of lenses; we

also need the monoidal product(
𝐴−

𝐴+

)
⊗

(
𝐵−

𝐵+

)
B

(
𝐴− × 𝐵−

𝐴+ × 𝐵+

)
.

We need this product to put systems together before wiring them. In order to wire

together non-deterministic systems, we will need to generalize this product of lenses

to generalized lenses. For this, we will need the notion of an monoidal indexed category
and the associated monoidal Grothendieck construction as defined in [MV18].

Definition 2.6.3.1. A monoidal strict indexed category (A : Cop → Cat, ⊗, 1,⊠, 1̂) consists

of:

• A strict indexed category A : Cop → Cat,
• A monoidal structure (⊗, 1) on C,

• A natural family of functors ⊠ : A(𝐶) ×A(𝐶′) → A(𝐶 ⊗ 𝐶′) and 1̂ ∈ A(1) with

natural isomorphisms

𝐴1 ⊠ (𝐴2 ⊠ 𝐴3) � (𝐴1 ⊠ 𝐴2) ⊠ 𝐴3 ,

1̂ ⊠ 𝐴 � 𝐴 � 𝐴 ⊠ 1̂.
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These natural isomorphisms are required to satisfy coherences reminiscent of

those of a monoidal category.

Theorem 2.6.3.2 ([MV18]). Let A : Cop → Cat be a monoidal indexed category. Then

the Grothendieck construction

∫ 𝐶:C
A(𝐶)may be equipped with a monoidal structure(

𝐴−

𝐴+

)
⊗

(
𝐵−

𝐵+

)
B

(
𝐴− ⊠ 𝐵−

𝐴+ ⊗ 𝐵+

)
.

If the base of indexing C is cartesian, then there is a simpler way to describe a

monoidal structure on an indexed category A : Cop → Cat.

Theorem 2.6.3.3 ([Shu08]). Let C be a cartesian category. Then a monoidal structures

on a strict indexed category A : Cop → Cat whose underlying monoidal structure on

C is given by the cartesian product may be equivalently given by the data:

• A monoidal structure ⊗ : A(𝐶) ×A(𝐶) →A(𝐶) and 1 ∈ A(𝐶) for each 𝐶 ∈ C,

• A lax structure on each reindexing 𝑟∗ : A(𝐶) → A(𝐶′) for each 𝑟 : 𝐶′ → 𝐶, so

that the lax structure on (𝑟2 ◦ 𝑟1)∗ is the composite of the lax structures on 𝑟2 and

𝑟1.

Proof Sketch. We define the product ⊗ : A(𝐶)×A(𝐶) →A(𝐶) as ⊠◦Δ∗ where Δ : 𝐶 →
𝐶 × 𝐶 is the diagonal. We similarly define 1 ∈ A(𝐶) as !

∗(1̂). □

We use Theorem 2.6.3.3 and Theorem 2.6.3.2 to recover the product of lenses.

Lemma 2.6.3.4. Let C be a cartesian category and let 𝐶 ∈ C. The category Ctx𝐶 has a

monoidal structure given by 𝑋 ⊗ 𝑌 B 𝑋 × 𝑌, 1 B 1, and

𝑓 ⊗ 𝑔 B 𝐶 × 𝑋 × 𝑌 Δ−→ 𝐶 × 𝐶 × 𝑋 × 𝑌 ∼−→ 𝐶 × 𝑋 × 𝐶 × 𝑌
𝑓×𝑔
−−−→ 𝑋′ × 𝑌′.

In terms of elements,

( 𝑓 ⊗ 𝑔)(𝑐, 𝑥, 𝑦) B ( 𝑓 (𝑐, 𝑥), 𝑔(𝑐, 𝑦)).

Proof. We begin by showing that ⊗ is functorial:

(( 𝑓 ′ ◦ 𝑓 ) ⊗ (𝑔′ ◦ 𝑔))(𝑐, 𝑥, 𝑦) = (( 𝑓 ′ ◦ 𝑓 )(𝑐, 𝑥), (𝑔′ ◦ 𝑔)(𝑐, 𝑦))
= ( 𝑓 ′(𝑐, 𝑓 (𝑐, 𝑥)), 𝑔′(𝑐, 𝑔′(𝑐, 𝑦)))
= ( 𝑓 ′ ⊗ 𝑔′)( 𝑓 (𝑐, 𝑥), 𝑔(𝑐, 𝑦))
= ( 𝑓 ′ ⊗ 𝑔′) ◦ ( 𝑓 ⊗ 𝑔)(𝑥, 𝑦).

Next, we need associators𝑋⊗(𝑌⊗𝑍) � (𝑋⊗𝑌)⊗𝑍 and unitors 1⊗𝑋 � 𝑋 � 𝑋⊗1. We

may get these by applying !
∗

: C→ Ctx𝐶 (which sends 𝑓 : 𝑋 → 𝑌 to 𝑓 ◦𝜋1 : 𝐶×𝑋 → 𝑌)
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to the associators and unitors of C. It is straightforward to see that these are natural

with respect to maps in Ctx𝐶 . □

Proposition 2.6.3.5. Let C be a cartesian category. Then Ctx− : Cop → Cat may be

endowed with a monoidal structure so that the induced monoidal structure on the

Grothendieck construction is the product of lenses(
𝐴−

𝐴+

)
⊗

(
𝐵−

𝐵+

)
B

(
𝐴− × 𝐵−

𝐴+ × 𝐵+

)
.

Proof. By Lemma 2.6.3.4, there is monoidal structure on each Ctx𝐶 . We note that by

definition, each reindexing 𝑟∗ : Ctx𝐶 → Ctx𝐶′ along 𝑟 : 𝐶′→ 𝐶 preserves this monoidal

structure strictly.

𝑟∗( 𝑓 ⊗ 𝑔)(𝑐′, (𝑥, 𝑦)) = ( 𝑓 ⊗ 𝑔)(𝑟(𝑐′), (𝑥, 𝑦))
= ( 𝑓 (𝑟(𝑐′), 𝑥), 𝑔(𝑟(𝑐′), 𝑦))
= (𝑟∗ 𝑓 ⊗ 𝑟∗𝑔)(𝑐, (𝑥, 𝑦)).

The rest then follows by Theorem 2.6.3.3 and Theorem 2.6.3.2. □

2.6.4 Monadic lenses as generalized lenses

Now we are ready to define monadic lenses. We have a formula for getting lenses out

of an indexed category; we just need to find the right indexed category. We will do

this by modifying the definition of Ctx𝐶 so that a map is of the form 𝐶 × 𝑋 → 𝑀𝑌. If

the resulting categories Ctx𝑀
𝐶

remain indexed over C, we have a ready made notion of

monadic lens and monadic lens composition given by the Grothendieck construction!

We will be able to define composition in the categories Ctx𝑀
𝐶

by making use of the

natural map

𝜆 : 𝐶 ×𝑀𝑋
𝜂×𝑀𝑋
−−−−−→ 𝑀𝐶 ×𝑀𝑋

𝜎−→ 𝑀(𝐶 × 𝑋)

Using string diagrams, we may draw this map as

Using do notation, we may describe this map as

(𝑐, 𝑚) ↦→
do

𝑐′← 𝜂(𝑐)
𝑥 ← 𝑚

𝜂(𝑐′, 𝑥)

=
do

𝑥 ← 𝑚

𝜂(𝑐, 𝑥)
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Definition 2.6.4.1. LetC be a cartesian category and𝑀 : C→ C a commutative monad.

For an object 𝐶 ∈ C, there is a category Ctx𝑀
𝐶

(called the biKleisli category of 𝐶 × − and

𝑀) with:

• Objects the objects of C.

• Map 𝑓 : 𝑋 ⇝ 𝑌 are maps 𝑓 : 𝐶 × 𝑋 → 𝑀𝑌 in C.

• The identity 𝑋 ⇝ 𝑋 is 𝜋2
# 𝜂.

• The composite 𝑓 # 𝑔 of 𝑓 : 𝑋 ⇝ 𝑌 and 𝑔 : 𝑌⇝ 𝑍 is given by

𝑓 # 𝑔 B (Δ𝐶 × 𝑋) # (𝐶 × 𝑓 ) # 𝜆 # 𝑀𝑔 # 𝜇.

𝐶 × 𝑋 → 𝐶 × 𝐶 × 𝑋 → 𝐶 ×𝑀𝑌 → 𝑀(𝐶 × 𝑌) → 𝑀2𝑍→ 𝑀𝑍

Here, 𝜆 B (𝜂 ×𝑀𝑋) # 𝜎. Using do notation, we may describe the composite 𝑓 # 𝑔
as

(𝑐, 𝑚) ↦→
do

𝑥 ← 𝑚

𝑦 ← 𝑓 (𝑐, 𝑥)
𝑔(𝑐, 𝑦)

We can show that Ctx𝑀
𝐶

is indeed a category using string diagrams. In string

diagrams, a map 𝑓 : 𝐶 × 𝑋 → 𝑀𝑌 in Ctx𝑀
𝐶

is drawn

𝑓

and composition is drawn

𝑓 𝑔

The identity is drawn

In order to show that this composition is unital and associative, we will need to show

that the following four laws hold relating 𝜆 to the structure of 𝑀 and of 𝐶 × (−):

= (2.19)

= (2.20)

= (2.21)
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= (2.22)

We will prove these laws in the upcoming Lemma 2.6.4.2.3 Using them, we can see

that composition in Ctx𝑀
𝐶

is unital and associative.

𝑓
=

𝑓
= 𝑓

𝑓
=

𝑓
= 𝑓

𝑓 𝑔 ℎ
=

𝑓 𝑔 ℎ

=

ℎ𝑔𝑓

=

ℎ𝑔𝑓

This shows that Ctx𝑀
𝐶

is a category. We now prove the crucial laws which undergird

the above graphical arguments.

3
And we will re-express them as commutative diagrams there.
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Lemma 2.6.4.2. Let 𝑀 : C → C be a commutative monad on a cartesian category C.

Then the map 𝜆 : 𝐶 ×𝑀𝑋 → 𝑀(𝐶 × 𝑋) defined by

𝜆 B (𝜂 ×𝑀𝑋) # 𝜎

is natural in both 𝑋 and 𝐶. Furthermore, the following four diagrams commute:

𝐶 × 𝑋 𝐶 ×𝑀𝑋

𝑀(𝐶 × 𝑋)
𝜂

𝐶×𝜂

𝜆 (2.23)

𝐶 ×𝑀𝑋 𝑀(𝐶 × 𝑋)

𝑀𝑋

𝜆

𝜋2

𝑀𝜋2

(2.24)

𝐶 ×𝑀2𝑋 𝐶 ×𝑀𝑋

𝑀(𝐶 ×𝑀𝑋) 𝑀2(𝐶 × 𝑋) 𝑀(𝐶 × 𝑋)
𝜆

𝐶×𝜇

𝜆

𝑀𝜆 𝜇

(2.25)

𝐶 ×𝑀𝑋 𝑀(𝐶 × 𝑋)

𝐶 × 𝐶 ×𝑀𝑋 𝐶 ×𝑀(𝐶 × 𝑋) 𝑀(𝐶 × 𝐶 × 𝑋)

𝜆

Δ𝐶×𝑀𝑋 𝑀(Δ𝐶×𝑋)

𝐶×𝜆 𝜆

(2.26)

Exercise 2.6.4.3. Prove Lemma 2.6.4.2 by showing that the diagrams commute. This

uses the properties of the commutativity 𝜎 and naturality. You may find the do notation

helpful. ♢

In order to wire diagrams together, we also need the monoidal product on lenses.
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Lemma 2.6.4.4. Let C be a cartesian category and let 𝑀 : C → C be a commutative

monad. Then for any 𝐶 ∈ C, there is a symmetric monoidal structure on Ctx𝑀
𝐶

given

by 𝑋 ⊗ 𝑌 B 𝑋 × 𝑌, with unit 1, and

𝑓 ⊗ 𝑔 B 𝐶 × 𝑋 × 𝑌 Δ−→ 𝐶 × 𝐶 × 𝑋 × 𝑌 ∼−→ 𝐶 × 𝑋 × 𝐶 × 𝑌
𝑓×𝑔
−−−→ 𝑀𝑋 ×𝑀𝑌 𝜎−→ 𝑀(𝑋 × 𝑌).

With the do notation, 𝑓 ⊗ 𝑔 may be defined as

(𝑐, 𝑥, 𝑦) ↦→

do
𝑧 ← 𝑓 (𝑐, 𝑥)
𝑤 ← 𝑔(𝑐, 𝑦)
𝜂(𝑧, 𝑤)

Proof. We will use the do notation to argue this. The proofs in the do notation can,

with some care, be extended out into diagram chases if the reader desires to do so.

We will show that ⊗ is functorial. Let 𝑓 : 𝑋1 → 𝑌1, 𝑔 : 𝑋2 → 𝑌2, 𝑓 ′ : 𝑌1 → 𝑍1 and

𝑔′ : 𝑌2 → 𝑍2. Then

( 𝑓 ⊗ 𝑔) # ( 𝑓 ′ ⊗ 𝑔′) = (𝑐, 𝑥1 , 𝑥2) ↦→

do
𝑦1 ← 𝑓 (𝑐, 𝑥1)
𝑦2 ← 𝑔(𝑐, 𝑥2)
𝑧1 ← 𝑓 ′(𝑐, 𝑦1)
𝑧2 ← 𝑔′(𝑐, 𝑦2)
𝜂(𝑧1 , 𝑧2)

= (𝑐, 𝑥1 , 𝑥2) ↦→

do
𝑦1 ← 𝑓 (𝑐, 𝑥1)
𝑧1 ← 𝑓 ′(𝑐, 𝑦1)
𝑦2 ← 𝑔(𝑐, 𝑥2)
𝑧2 ← 𝑔′(𝑐, 𝑦2)
𝜂(𝑧1 , 𝑧2)

= ( 𝑓 # 𝑓 ′) ⊗ (𝑔 # 𝑔′)

Note the use of commutativity.

Next, we need to give associators 𝛼 : (𝑋 ⊗ 𝑌) ⊗ 𝑍 → 𝑋 ⊗ (𝑌 ⊗ 𝑍) and unitors

ℓ : 1 ⊗ 𝑋 → 𝑋 and 𝑟 : 𝑋 ⊗ 1→ 𝑋.

𝛼(𝑐, (𝑥, 𝑦), 𝑧) B 𝜂(𝑥, (𝑦, 𝑧)).
ℓ (𝑐, (∗, 𝑥)) B 𝜂(𝑥)
𝑟(𝑐, (𝑥, ∗)) B 𝜂(𝑥)

These can easily be seen to satisfy the required coherences, and they are just defined

by shuffling the parentheses about. □
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From this, we may finally prove the following theorem.

Theorem 2.6.4.5. Let 𝑀 : C → C be a commutative monad on a cartesian category.

Then there is a monoidal strict indexed category

Ctx𝑀− : Cop → Cat

which sends an object 𝐶 ∈ C to the category Ctx𝑀
𝐶

and which sends a map 𝑟 : 𝐶′→ 𝐶

to the functor

𝑟∗ : Ctx𝑀𝐶 → Ctx𝑀𝐶′

which acts as the identity on objects and which sends a morphism 𝑓 : 𝐶 × 𝑋 → 𝑀𝑌 to

the composite 𝐶′ × 𝑋 𝑟×𝑋−−−→ 𝐶 × 𝑋
𝑓
−→ 𝑀𝑌.

Proof. All that remains to be proven is functoriality in 𝐶. Letting 𝑟 : 𝐶′ → 𝐶, we get a

functor 𝑟∗ : Ctx𝑀
𝐶
→ Ctx𝑀

𝐶′ given by sending 𝑓 : 𝐶 × 𝑋 → 𝑀𝑌 to 𝑓 ◦ (𝑟 × 𝑋) : 𝐶′ × 𝑋 →
𝑀𝑌. In terms of elements, this means

𝑟∗ 𝑓 (𝑐′, 𝑥) B 𝑓 (𝑟(𝑐′), 𝑥)

Using the do notation, we can quickly show that this is functorial:

𝑟∗(𝑔 ◦ 𝑓 )(𝑐′, 𝑥) = (𝑔 ◦ 𝑓 )(𝑟(𝑐′), 𝑥)

=

do
𝑦 ← 𝑓 (𝑟(𝑐′), 𝑥)
𝑔(𝑟(𝑐′), 𝑦)

=

do
𝑦 ← 𝑟∗ 𝑓 (𝑐′, 𝑥)
𝑟∗𝑔(𝑐′, 𝑦)

= (𝑟∗𝑔 ◦ 𝑟∗ 𝑓 )(𝑐′, 𝑥)

To show that it is monoidal, we may also use the do notation:

𝑟∗( 𝑓 ⊗ 𝑔)(𝑐′, 𝑥, 𝑦) = ( 𝑓 ⊗ 𝑔)(𝑟(𝑐′), 𝑥, 𝑦)

=

do
𝑧 ← 𝑓 (𝑟(𝑐′), 𝑥)
𝑤 ← 𝑔(𝑟(𝑐′), 𝑦)
𝜂(𝑧, 𝑤)

=

do
𝑧 ← 𝑟∗ 𝑓 (𝑐′, 𝑥)
𝑤 ← 𝑟∗𝑔(𝑐′, 𝑦)
𝜂(𝑧, 𝑤)

= (𝑟∗ 𝑓 ) ⊗ (𝑟∗𝑔)(𝑐′, 𝑥, 𝑦)
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□

With Theorem 2.6.4.5 in hand, we may now define the category of monadic lenses.

Definition 2.6.4.6. For a commutative monad 𝑀 : C → C on a cartesian category, we

define the symmetric monoidal category of 𝑀-lenses to be the symmetric monoidal

category of Ctx𝑀− -lenses:

Lens𝑀
C
B

∫ 𝐶:C

Ctx𝑀𝐶
op

Exercise 2.6.4.7. Show that the category of 𝑀-lenses may be described as follows:

• Its objects are pairs

(
𝐴−

𝐴+

)
of objects of C.

• Its maps are 𝑀-lenses

(
𝑓 ♯

𝑓

)
:

(
𝐴−

𝐴+

)
⇆

(
𝐵−

𝐵+

)
where 𝑓 : 𝐴+ → 𝐵+ and 𝑓 ♯ :

𝐴+ × 𝐵− → 𝑀𝐴−.

• The identity is

(
𝜂◦𝜋2

id

)
.

• Composition is defined by (
𝑓 ♯

𝑓

)
#

(
𝑔♯

𝑔

)
B

(
ℎ

𝑓 # 𝑔

)
where ℎ is defined in the do notation as

ℎ(𝑎+ , 𝑐−) B
do

𝑏− ← 𝑔♯( 𝑓 (𝑎+), 𝑐−)

𝑓 ♯(𝑎+ , 𝑏−)

♢

2.7 Changing the Flavor of Non-determinism

In Section 2.5, we saw how commutative monad maps 𝜙 : 𝑀 → 𝑁 let us change

the flavor of non-determinism. In particular, since the unit 𝜂 : id → 𝑀 is always a

commutative monad map, we can always interpret a deterministic system as a non-

deterministic system.

In this section, we’ll show that any commutative monad morphism 𝜙 : 𝑀 → 𝑁

induces a symmetric monoidal functor Lens𝑀
C
→ Lens𝑁

C
. We will do this using the

functoriality of the Grothendieck construction: any indexed functor induces a functor

on the Grothendieck constructions.

Definition 2.7.0.1. Let A : Cop → Cat and B : Dop → Cat be strict indexed categories.

A strict indexed functor (𝐹, 𝐹) : A → B is a pair consisting of

• A functor 𝐹 : C→ D, and
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• A natural transformation 𝐹 : A → B ◦ 𝐹op
. Explicitly, this is a family of functors

𝐹𝐶 : A(𝐶) → B(𝐹𝐶) so that for any 𝑟 : 𝐶′→ 𝐶, we have that 𝐹 ◦ 𝑟∗ = (𝐹𝑟)∗ ◦ 𝐹.

If A and B are monoidal strict indexed categories, then an indexed functor (𝐹, 𝐹) :

A → B is strict monoidal if 𝐹(𝐶1 ⊗ 𝐶2) = 𝐹𝐶1 ⊗ 𝐹𝐶2 and 𝐹(𝐴1 ⊠ 𝐴2) = 𝐹(𝐴1) ⊠ 𝐹(𝐴2),
and 𝐹 and 𝐹 send associators to associators and unitors to unitors.

Proposition 2.7.0.2. Let (𝐹, 𝐹) : A → B be a strict indexed functor. Then there is a

functor (
𝐹

𝐹

)
:

∫ 𝐶:C

A(𝐶) →
∫ 𝐷:D

B(𝐷)

given by (
𝐹

𝐹

) (
𝑓♭

𝑓

)
B

(
𝐹 𝑓♭

𝐹 𝑓

)
.

If furthermore (𝐹, 𝐹) is strictly monoidal, then so is

(
𝐹
𝐹

)
.

Proof. We will show that this assignment is functorial. Recall that(
𝑓♭

𝑓

)
#

(
𝑔♭

𝑔

)
B

(
𝑓♭ # 𝑓 ∗𝑔♭
𝑓 # 𝑔

)
.

We may therefore calculate:(
𝐹

𝐹

) ((
𝑓♭

𝑓

)
#

(
𝑔♭

𝑔

))
=

(
𝐹( 𝑓♭ # 𝑓 ∗𝑔♭)
𝐹( 𝑓 # 𝑔)

)
=

(
𝐹 𝑓♭ # 𝐹( 𝑓 ∗𝑔♭)
𝐹 𝑓 # 𝐹𝑔

)
=

(
𝐹 𝑓♭ # (𝐹 𝑓 )∗(𝐹𝑔♭)

𝐹 𝑓 # 𝐹𝑔

)
=

(
𝐹

𝐹

) (
𝑓♭

𝑓

)
#

(
𝐹

𝐹

) (
𝑔♭

𝑔

)
We end by noting that

(
𝐹
𝐹

) (
id

id

)
=

(
id

id

)
by functoriality of 𝐹 and 𝐹.

If (𝐹, 𝐹) is strictly monoidal, then so is

(
𝐹
𝐹

)
because the monoidal structure of

the Grothendieck constructions are defined by pairing the monoidal structures of the

base. □
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Proposition 2.7.0.3. Let 𝜙 : 𝑀 → 𝑁 be a commutative monad morphism. Then there

is a strict monoidal indexed functor

(id, 𝜙∗) : Ctx𝑀− → Ctx𝑁− .

Proof. We need to give a family of strict monoidal functors 𝜙∗ : Ctx𝑀
𝐶
→ Ctx𝑁

𝐶
, natural

in 𝐶. We take 𝜙∗ to act as the identity on objects, and for 𝑓 : 𝐶 × 𝑋 → 𝑀𝑌, we define

𝜙∗ 𝑓 B 𝑓 # 𝜙.

We now show that this is functorial using the do notation:

𝜙∗( 𝑓 # 𝑔) = 𝑓 # 𝑔 # 𝜙

= (𝑐, 𝑥) ↦→ 𝜙
©­­­«

do
𝑦 ← 𝑓 (𝑐, 𝑥)
𝑔(𝑐, 𝑦)

ª®®®¬
= (𝑐, 𝑥) ↦→

do
𝑦 ← 𝜙( 𝑓 (𝑐, 𝑥))
𝜙(𝑔(𝑐, 𝑦))

by Lemma 2.5.0.5

= 𝜙∗ 𝑓 # 𝜙∗𝑔.

We also note that 𝜙∗id = id since

𝜙∗(id) = 𝜋2
# 𝜂𝑀 # 𝜙

= 𝜋2
# 𝜂𝑁

= id

We may also use the do notation to prove strict monoidal-ness. We begin by noting

that the functor is strictly monoidal on objects since it is identity on objects and the

monoidal structures are defined identically.

𝜙∗( 𝑓 ⊗ 𝑔) = (𝑐, 𝑥1 , 𝑥2) ↦→ 𝜙

©­­­­­«
do

𝑦1 ← 𝑓 (𝑐, 𝑥1)
𝑦2 ← 𝑔(𝑐, 𝑥2)
𝜂𝑀(𝑦1 , 𝑦2)

ª®®®®®¬
= (𝑐, 𝑥1 , 𝑥2) ↦→

do
𝑦1 ← 𝜙( 𝑓 (𝑐, 𝑥1))
𝑦2 ← 𝜙(𝑔(𝑐, 𝑥2))
𝜙𝜂𝑀(𝑦1 , 𝑦2)

= (𝑐, 𝑥1 , 𝑥2) ↦→

do
𝑦1 ← 𝜙( 𝑓 (𝑐, 𝑥1))
𝑦2 ← 𝜙(𝑔(𝑐, 𝑥2))
𝜂𝑁 (𝑦1 , 𝑦2)
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= 𝜙∗ 𝑓 ⊗ 𝜙∗𝑔.

□

Corollary 2.7.0.4. Let 𝜙 : 𝑀 → 𝑁 be a commutative monad morphism. Then there is

a strict monoidal functor

𝜙∗ : Lens𝑀
C
→ Lens𝑁

C

Given by

𝜙∗

(
𝑓 ♯

𝑓

)
B

(
𝑓 ♯ # 𝜙

𝑓

)
.

Proof. We may apply Proposition 2.7.0.2 to Proposition 2.7.0.3 (or, more precisely, to

the pointwise opposite (id, 𝜙op

∗ )). □

The theorem has a useful corollary: we can always wire together non-deterministic

systems with wiring diagrams.

Corollary 2.7.0.5. For any commutative monad 𝑀 : C→ C, there is a strictly monoidal

functor

𝜂∗ : LensC → Lens𝑀
C
.

Example 2.7.0.6. Suppose we have two people S1 and S2 flipping coins. S1 flips a single

fair coin and exposes its value:

S1 {heads,tails}

That is, StateS1 = {heads, tails}

updateS1
(_) = 1

2

heads + 1

2

tails

exposeS1
= id.

On the other hand, S2 will flip either a left coin or a right coin, and expose the resulting

value. But these coins are biased in different ways The coin that S2 flips is determined

by whether it sees heads or tails.

S2 {heads,tails}

That is, StateS1 = {heads, tails} and

updateS2
(_, heads) = 1

4

heads + 3

4

tails
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updateS2
(_, tails) = 3

4

heads + 1

4

tails

exposeS2
= id.

We can now imagine that S1 sends the result of their coin flip over a channel to S2. But

this channel has noise given by

𝜌(heads) = 9

10

heads + 1

10

tails

𝜌(tails) = 1

10

heads + 9

10

tails

Explictly, we will compose with the wiring diagram:

𝜌𝐴 𝐶𝐵

We can describe this as a D-lens(
𝑤♯

𝑤

)
:

(
InS1 × InS2

OutS1 × OutS2

)
⇆

(
{∗}

OutS2

)
• 𝑤 : OutS1 × OutS2 → OutS2 is the projection 𝜋2.

• 𝑤♯
: OutS1 × OutS2 × {∗} → D(InS1 × InS2) is given by

𝑤♯(𝑥, 𝑦, ∗) = (∗, 𝜌(𝑥)).

We may now form the composite system:

S1 𝜌 S2

This has states StateS1 × StateS2 , exposes just the state of StateS2 , and updates in the
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following way:

update((_, _), ∗) =

1

2

(
9

10

1

4

+ 1

10

3

4

)
(heads, heads)

+ 1

2

(
1

10

3

4

+ 9

10

1

4

)
(tails, heads)

+ 1

2

(
9

10

3

4

+ 1

10

1

4

)
(heads, tails)

+ 1

2

(
1

10

3

4

+ 9

10

1

4

)
(tails, tails)

2.8 Summary and Further Reading

In this chapter, we extended the notion of lens to monadic lenses to accomodate non-

deterministic systems. We saw how any commutative monad gave rise to a theory of

non-determinism, from possibilistic to probabilistic to costs and rewards. One nice

thing about monads is that you can play with them in Haskell. There are plenty of

places to learn about monads in Haskell (perhaps too many), so I won’t make any

specific recommendations. For more about monads in category theory, check out

Chapter 5 of [Per21].

We then saw how the notion of lens could be generalized to any indexed category.

This notion of generalized lens is due to Spivak in [Spi19]. This generalization of lens

will underly our formal notion of systems theory, which will be introduced in the next

chapter.

Monads were first introduced as “standard constructions” by Huber [Hub61], and

were often called “triples” in early category theory. The name “monad” was coined

by Bénabou in [Bén67]. Kleisli defined his eponymous categories in [Kle65], and

Moggi’s seminal work [Mog89] [Mog91] showed the usefulness of Kleisli’s categories

in functional programming.





Chapter 3

How systems behave

3.1 Introduction

So far, we have seen how to wire up dynamical systems. But we haven’t seen our

dynamical systems actually do anything. In this section, we will begin to study the

behavior of our dynamical systems. We will see particular kinds of behaviors our

systems can have, including trajectories, steady states, and periodic orbits.

Informal Definition 3.1.0.1. A behavior of a dynamical system is a particular way its

states can change according to its dynamics.

There are different kinds of behavior corresponding to the different sorts of ways that

the states of a system could evolve. Perhaps they eventually repeat, or they stay the

same despite changing conditions.

In Section 3.3, we will give a formal definition of behavior of dynamical system.

We will see that the different kinds of behaviors — trajectories, steady states, periodic

orbits, etc. — can each be packaged up into a single system1 that represents that kind

of behavior. This system will behave in exactly that kind of way, and do nothing else.

Maps from it to a system of interest will exhibit that sort of behavior in the system of

interest.

We will then investigate the definition of behaviors in terms of a double category
which merges together the category of lenses with a category of charts (which are

important for defining behaviors). We will see that behaviors are certain squares in

this double category, and see what using this double category can tell us about how

behaviors of component systems relate to the behaviors of composed systems.

1
Or family of systems.

99
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3.2 Kinds of behavior

3.2.1 Trajectories

A trajectory is the simplest and freest sort of behavior a system can have. A trajectory

is just “what a state does”. In this section, we will see what trajectories look like in the

deterministic and differential systems theories.

Trajectories in the deterministic systems theory

In the introduction, we saw that the Clock system Eq. (1.2) has behaves in this way if it

starts at 11 o’clock:

11

tick↦−−→ 12

tick↦−−→ 1

tick↦−−→ 2

tick↦−−→ · · ·

This sequence of states of the clock system, each following from the last by the

dynamics of the system, is called a trajectory. When our systems have input parameters,

we will need to choose a sequence of input parameters to feed the system in order for

the states to change.

Definition 3.2.1.1. Let

S =

(
updateS

exposeS

)
:

(
StateS

StateS

)
⇆

(
InS

OutS

)
be a deterministic system. Suppose that 𝑝 : N→ InS is a sequence of parameters for S.

Then a 𝑝-trajectory of S is a sequence 𝑠 : N→ StateS of states so that

updateS(𝑠𝑖 , 𝑝𝑖) = 𝑠𝑖+1

for all 𝑖 ∈ N.

If additionally 𝑣 : N→ OutS is a sequence of output values forS, then a

(
𝑝
𝑣

)
-trajectory

is a sequence of states 𝑠 : N→ StateS so that

updateS(𝑠𝑖 , 𝑝𝑖) = 𝑠𝑖+1

exposeS(𝑠𝑖) = 𝑣𝑖

for all 𝑖 ∈ N. We call the pair

(
𝑝
𝑣

)
the chart of the trajectory 𝑠.

Its worth noting that a trajectory 𝑠 : N → StateS in a deterministic system is

determined entirely by its start state 𝑠0. This is what makes deterministic systems

deterministic: if you know the dynamics and you know what state the system is in,

you know how it will continue to behave.
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Example 3.2.1.2. Consider the SIR model of Example 1.2.1.7. Suppose that we let our

parameters (𝑎, 𝑏) : N → InSIR be constant at .2 and .3 respectively: that is, 𝑎𝑡 = .2

and 𝑏𝑡 = .3 for all 𝑡. Then a trajectory for SIR with parameters (𝑎, 𝑏) is a sequence of

populations (𝑠, 𝑖, 𝑟) : N→ StateSIR such that
𝑠𝑡+1

𝑖𝑡+1

𝑟𝑡+1

 =


𝑠𝑡 − .2𝑠𝑡 𝑖𝑡

𝑖𝑡 + .2𝑠𝑡 𝑖𝑡 − .3𝑖𝑡
𝑟𝑡 + .3𝑖𝑡


Here is an example of such a trajectory with a 1000 total people and one infected

person to start, that is (𝑠0 , 𝑖0 , 𝑟0) = (999, 1, 0).

𝑡1 2 3 4 5 6 7 8 9 10

(𝑠, 𝑖, 𝑟)

100

200

300

400

500

600

700

800

900

1000

Jaz: I don’t know how to actually plot this...

Example 3.2.1.3. If a deterministic system is written as a transition diagram, then the

trajectories in the system are paths through the diagram. Recall this system from
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Example 1.2.1.8:

𝑎 𝑏

𝑏

Suppose that 𝑝 : N→ {green, orange} alternates between green and orange. Then

starting at the top right state, a trajectory quickly settles into alternating between the

top two states:

𝑏 𝑏 𝑎 𝑏 𝑎 · · ·

Knowing about trajectories can show us another important role that deterministic

systems play: they are stream transformers. From a stream 𝑝 : N→ InS of inputs and a

start state 𝑠0 ∈ StateS, we get a trajectory 𝑠 : N→ StateS given recursively by

𝑠𝑡+1 := updateS(𝑠𝑡 , 𝑝𝑡).

We then get a stream 𝑣 : N→ OutS of output values by defining

𝑣𝑡 := exposeS(𝑠𝑡).

The system S is a way of transforming streams of input parameters into streams of

output values.

Proposition 3.2.1.4 (Deterministic systems as stream transformers). Let

S =

(
updateS

exposeS

)
:

(
StateS

StateS

)
⇆

(
InS

OutS

)
be a deterministic system. Then for every 𝑠0 ∈ StateS, we get a stream transformation

function

transformS : InNS → OutNS

Given by

transformS(𝑝)0 = exposeS(𝑠0)
transformS(𝑝)𝑡+1 = exposeS(updateS(𝑠𝑡 , 𝑝𝑡))

where 𝑠𝑡+1 = updateS(𝑠𝑡 , 𝑝𝑡) is the trajectory given by 𝑠0.

Exercise 3.2.1.5. Say how the system of Example 3.2.1.3 acts as a stream transformer

on the following streams:

1. 𝑝2𝑡 = green and 𝑝2𝑡+1 = orange.
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2. 𝑝𝑡 = green.

3. 𝑝0 = green and 𝑝𝑡 = orange for all 𝑡 > 0. ♢

Later, in Section 5.3, we will see that given trajectories of component systems, we get

a trajectory of a whole wired system. Even better, every trajectory of the whole wired

system can be calculated this way.

Trajectories in the differential systems theory

In a differential system, there is no “next” state after a given state. All we know is

how each state is tending to change. So to define a trajectory in the differential systems

theory, we can’t just pick a state and see how it updates; instead, we are going to pick

a state 𝑠𝑡 for every time 𝑡 ∈ Rwhich are changing in the way described by the system.

Definition 3.2.1.6. Let

S =

(
updateS

exposeS

)
:

(
StateS

StateS

)
⇆

(
InS

OutS

)
be a differential system. Suppose that 𝑝 : R→ InS is a differentiable choice of parame-

ters for all times 𝑡 ∈ R. Then a 𝑝-trajectory is a differentiable function 𝑠 : R→ StateS so

that

updateS(𝑠𝑡 , 𝑝𝑡) =
𝑑𝑠

𝑑𝑡
(𝑡).

for all 𝑡 ∈ R. Here,
𝑑𝑠
𝑑𝑡

is the vector of derivatives
𝑑𝑠𝑖
𝑑𝑡

for 𝑖 ∈ {1, . . . , 𝑛} where 𝑛 is the

number of state variables.

If, additionally, 𝑣 : R → OutS is a differentiable choice of outputs, then a

(
𝑝
𝑣

)
-

trajectory is a differentiable function 𝑠 : R→ StateS so that

updateS(𝑠𝑡 , 𝑝𝑡) =
𝑑𝑠

𝑑𝑡
(𝑡)

exposeS(𝑠𝑡) = 𝑣𝑡

for all 𝑡 ∈ R. We call the pair

(
𝑝
𝑣

)
the chart of the trajectory 𝑠.

Remark 3.2.1.7. A 𝑝-trajectory of a differential system is also referred to as a solution of

the differential equation it represents which choice of parameters 𝑝.

The definition of trajectory is what makes our differential systems actually describe

differential equations. Consider the Lotka-Volterra predator prey model from Sec-

tion 1.2.2: {
𝑑𝑟
𝑑𝑡

= bRabbits · 𝑟 − 𝑐1 𝑓 𝑟
𝑑𝑓

𝑑𝑡
= 𝑐2𝑟 𝑓 − dFoxes · 𝑓

(3.1)

Strictly speaking, this is not how we represent the system of differential equations

as a differential system. Instead, we would describe its update function updateLK :



104 CHAPTER 3. HOW SYSTEMS BEHAVE

R3 × R2 → R3
as

updateLK

©­­«

𝑆

𝐼

𝑅

 ,
[
bRabbits

dFoxes

]ª®®¬ B
[
bRabbits · 𝑟 − 𝑐1 𝑓 𝑟

𝑐2𝑟 𝑓 − dFoxes · 𝑓

]
The differential equations Eq. (3.1) are the defining equations which make the function

𝑡 ↦→

𝑆(𝑡)
𝐼(𝑡)
𝑅(𝑡)

 : R→ R3

a

[
bRabbits

dFoxes

]
-trajectory. That is, we interpret a differential system

(
updateS
exposeS

)
as a system

of differential equations by considering the equations which define what it means for

a 𝑠 : R→ StateS to be a trajectory.

Unlike deterministic systems, it is not necessarily the case that a state uniquely

determines a trajectory through it for differentiable systems. This is the case, however,

if the differential equations are linear.

Example 3.2.1.8. Consider the following variant of an SIR model proposed by Norman

Bailey in [Bai75]: 
𝑑𝑆
𝑑𝑡

= −𝑏𝑆𝐼𝑆+𝐼
𝑑𝐼
𝑑𝑡

= 𝑏𝑆𝐼
𝑆+𝐼 − 𝑏𝐼

𝑑𝑅
𝑑𝑡

= 𝑏𝐼

That is,

updateSIR

©­­«

𝑆

𝐼

𝑅


ª®®¬ =


−𝑏𝑆𝐼
𝑆+𝐼

𝑏𝑆𝐼
𝑆+𝐼 − 𝑏𝐼
𝑏𝐼

 .
We note that the total population 𝑁 = 𝑆 + 𝐼 + 𝑅 will always be constant. Suppose, for

simplicity, that 𝑏 is a constant. Suppose that 𝑆0 and 𝐼0 are initial values for susceptible

and infected populations respectively, and let 𝜅 B 𝐼0
𝑆0

. Then the function
𝑆(𝑡)
𝐼(𝑖)
𝑅(𝑡)

 B


𝑆0𝑒
− 𝑏𝜅𝑡

1+𝜅

𝐼0𝑒
− 𝑏𝜅𝑡

1+𝜅

𝑁 − (𝑆0 + 𝐼0)𝑒−
𝑏𝜅𝑡
1+𝜅


will be a 𝑏-trajectory for SIR. This can be solved in greater generality, for variable

parameter 𝑏 and for two separate parameters governing the transition from susceptible

to infected and infected to removed; see [BST19].
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Example 3.2.1.9. In this example, we will consider a simple RL-circuit:

𝑉 𝑅

𝐿

The voltage across the resistor is 𝑉𝑅 = 𝐼𝑅 while the voltage across the inductor is

𝑉𝐿 = 𝐿 𝑑𝐼
𝑑𝑡

. By Kirchoff’s voltage law, the total voltage differences, summed in an

oriented manner, must be 0. Therefore, −𝑉 +𝑉𝑅 +𝑉𝐿 = 0, or, in terms of
𝑑𝐼
𝑑𝑡

:

𝑑𝐼

𝑑𝑡
=
𝑉 − 𝑅𝐼
𝐿

.

We can express this RL-circuit as a differential system(
updateRL

id

)
:

(
R

R

)
⇆

(
R2 × R∗

R

)
where

updateRL

©­­«𝐼 ,

𝑉

𝑅

𝐿


ª®®¬ B

𝑉 − 𝑅𝐼
𝐿

.

We can then see that 𝐼 : R→ R defined by

𝐼(𝑡) = 𝑉

𝑅
(1 − 𝑒− 𝑅𝐿 𝑡)

gives a


𝑉

𝑅

𝐿

-trajectory for the RL system.

3.2.2 Steady states

A steady state of a system is a state which does not change. Steady states are important

because they are guarantees of stability: you know what they are going to keep doing

once you know what they are doing. A vase in a steady state is doing great, a heart in

a steady state is in need of attention.

Steady states in the deterministic systems theory

A steady state in the deterministic systems theory is a state which transitions to itself.
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Definition 3.2.2.1. Let

S =

(
updateS

exposeS

)
:

(
StateS

StateS

)
⇆

(
InS

OutS

)
be a deterministic system. For input parameter 𝑖 ∈ InS and output value 𝑜 ∈ OutS, an(
𝑖
𝑜

)
-steady state is a state 𝑠 ∈ StateS such that

updateS(𝑠, 𝑖) = 𝑠,

exposeS(𝑠) = 𝑜.

We call the pair

(
𝑖
𝑜

)
the chart of the steady state.

Remark 3.2.2.2. Its important to note that a steady state is relative to the input parameter

chosen. For example, in Example 1.2.1.8, the top left state is steady for the input

parameter orange but not for the input parameter green.

Unlike with trajectories, a system might not have any steady states. For example,

the Clock has no steady states; it always keeps ticking to the next hour.

In the transition diagram of a finite deterministic system, steady states will be loops

that begin and end at the same node. Since such a system is finite, we can arrange the

steady states by their chart into a InS × OutS matrix. For example, in Example 1.2.1.8,

we get the following {green, orange} × {𝑎, 𝑏} matrix:



green orange

𝑎 ∅
{

𝑎
}

𝑏

{
𝑏

}
∅


(3.2)

This is a “matrix of sets”, in that the entries are the actual sets of steady states. If we

just counted how many steady states there were for each input-output pair, we would

get this matrix: [ green orange

𝑎 0 1

𝑏 1 0

]
(3.3)

In Section 5.2, we’ll see that each wiring diagram gives a formula for calculating the

matrix of steady states of the composite system from the matrices of steady states of

the inner systems.

Exercise 3.2.2.3. What are the steady state matrices of systems S1 and S2 from Exer-

cise 1.3.2.7? What about the combined system S? ♢
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Steady-looking trajectories. The reason we are interested in steady states is that they

are highly predictable; if we know we are in a steady state, then we know we are always

going to get the same results. But it is possible for us to always get the same outputs

for the same input even though the internal state keeps changing. These are special

trajectories, and we call them steady-looking trajectories.

Definition 3.2.2.4. For 𝑖 ∈ InS and 𝑜 ∈ OutS of a system S, a

(
𝑖
𝑜

)
-steady looking trajectory

is a sequence of states 𝑠 : N→ StateS such that

updateS(𝑠𝑡 , 𝑖) = 𝑠𝑡+1

exposeS(𝑠𝑡) = 𝑜

for all 𝑡 ∈ N. We call the pair

(
𝑖
𝑜

)
the chart of the steady-looking trajectory 𝑠.

Remark 3.2.2.5. While the steady states of a wired together system can be calculated from

those of its components, this is not true for steady-looking trajectories. Intuitively, this

is because the internal systems can be exposing changing outputs between eachother

even while the eventual external output remains unchanged.

Exercise 3.2.2.6. Consider the wiring diagram:

S B S1 S2

Find systems S1 and S2 and a steady-looking trajectory of the wired system S which

is not steady-looking on the component systems. ♢

Steady states in the differential systems theory

A steady state in the differential systems theory is a state which has no tendency to

change.

Definition 3.2.2.7. Let

S =

(
updateS

exposeS

)
:

(
StateS

StateS

)
⇆

(
InS

OutS

)
be a differential system. For input parameter 𝑖 ∈ InS and output value 𝑜 ∈ OutS, an(
𝑖
𝑜

)
-steady state is a state 𝑠 ∈ StateS such that

updateS(𝑠, 𝑖) = 0,

exposeS(𝑠) = 𝑜.
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We call the pair

(
𝑖
𝑜

)
the chart of the steady state.

Example 3.2.2.8. Let’s see if there are any steady states of the Lotka-Volterra predator

prey model:

updateLK

([
𝑟

𝑓

]
,

[
bRabbits

dFoxes

])
B

[
bRabbits · 𝑟 − 𝑐1 𝑓 𝑟

𝑐2𝑟 𝑓 − dFoxes · 𝑓

]
We are looking for a state

[
𝑟

𝑓

]
whose update is 0. That is, we want to solve the system

of equations {
0 = bRabbits · 𝑟 − 𝑐1𝑟 𝑓

0 = 𝑐2𝑟 𝑓 − dFoxes · 𝑓

If the parameters

[
bRabbits

dFoxes

]
are both zero, then any state is a steady state. Clearly,

[
0

0

]
is a

steady state for any choice of parameters; this steady state could be called “extinction”.

But if the populations and parameters are non-zero, then[
𝑟

𝑓

]
=

[
dFoxes
𝑐2

bRabbits
𝑐1

]
is a steady state.

Example 3.2.2.9. Recall the RL circuit from Example 3.2.1.9:

updateRL

©­­«𝐼 ,

𝑉

𝑅

𝐿


ª®®¬ B

𝑉 − 𝑅𝐼
𝐿

.

We can see that 𝐼 B 𝑉
𝑅 is a steady state for this system given the parameters 𝑉 and 𝑅.

3.2.3 Periodic orbits

Even if the behavior of a system isn’t perfectly steady, it may continually repeat. To a

reasonable approximation, the position of the earth around the sun follows a cycle that

repeats every year. Using this as a paradigmatic example, we call these behaviors that

repeat periodic orbits.

Periodic orbits in the deterministic systems theory
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Definition 3.2.3.1 (Periodic orbit). A

(
𝑝
𝑣

)
-trajectory 𝑠 : N → StateS is periodic if there

exists a time 𝑡0 ∈ N≥1, called the period, such that 𝑠𝑡0 = 𝑠0. If the sequence of parameters

𝑝 : N→ InS is also periodic with the same period (in that 𝑝𝑡0 = 𝑝0 as well), then we say

that 𝑠 has periodic parameters.

Remark 3.2.3.2. Note that when we say that a periodic orbit has periodic parameters,

we assume that they are periodic with the same period. This has important but subtle

consequences for our theorems concerning the composition of behaviors in Section 5.3.

We explain the difference between a periodic orbit and a periodic orbit with periodic

parameters in a more precise manner in Remark 3.3.0.11.

Remark 3.2.3.3. Note that a steady state is a periodic orbit (with periodic parameters)

that has a period of 1.

Exercise 3.2.3.4. Describe a periodic orbit with period 1 that does not have periodic

parameters; how are they different from steady states? Are there any of these in systems

S1 and S2 of Exercise 1.3.2.7? ♢

Example 3.2.3.5. The Clock system is an exemplary periodic system with a period of 12.

The ClockWithDisplay of Eq. (1.6) has period 24.

Exercise 3.2.3.6. What are the periodic orbits in the systems S1 and S2 of Exercise 1.3.2.7

with periodic parameters, and what are their periods? What about the combined

system S? ♢

Exercise 3.2.3.7. Can you think of any periodic orbits in S1 and S2 of Exercise 1.3.2.7

which don’t have periodic parameters? ♢

Periodic orbits in the differential systems theory

Definition 3.2.3.8. A 𝑝-trajectory 𝑠 : R→ StateS for a differential system S is a periodic
orbit if there is a number 𝑘 such that

𝑠(𝑡) = 𝑠(𝑡 + 𝑘)

for all 𝑡 ∈ R. We refer to 𝑘 as the period of the orbit 𝑠. If 𝑝 is periodic of period 𝑘 as well

(that is, 𝑝(𝑡) = 𝑝(𝑡 + 𝑘) for all 𝑡), then we say that 𝑠 has periodic parameters.
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Example 3.2.3.9. Recall the Lotka-Volterra predator prey model of Section 1.2.2:{
𝑑𝑟
𝑑𝑡

= 𝑎 · 𝑟 − 𝑏 𝑓 𝑟
𝑑𝑓

𝑑𝑡
= 𝑐𝑟 𝑓 − 𝑑𝑓

We may take the Jacobian of this system to get the “community matrix”

𝐽(𝑟, 𝑓 ) =
©­­«
𝑎 − 𝑏 𝑓 −𝑏𝑟
𝑐 𝑓

𝑐𝑟 − 𝑑

ª®®¬ .
We may investigate the stability of the steady states (from Example 3.2.2.8) by looking

at the Jacobian. In particular, we find that

𝐽

(
𝑑

𝑐
,
𝑎

𝑏

)
=

(
0 − 𝑏𝑑𝑐
𝑎𝑐
𝑏

0

)
whose eigenvalues are ±𝑖

√
𝑎𝑑. Since the eigenvalues are purely imaginary and conju-

gate, this steady state is elliptic. Therefore the trajectories around this steady state are

ellipses, which is to say, periodic.

Eventually Periodic Orbits A trajectory might not get back to where it started, but

may still end up being periodic. We call these trajectories eventually periodic orbits,

since they eventually end up in a repeating cycle of states.

Definition 3.2.3.10 (Eventually periodic orbit). Working in a deterministic systems

theory, a

(
𝑝
𝑣

)
-trajectory 𝑠 : N→ StateS is eventually periodic if there are times 𝑡0 < 𝑡1 ∈ N

such that 𝑠𝑡0+𝑡 = 𝑠𝑡1+𝑡 for all 𝑡 ∈ N. If the sequence of parameters 𝑝 : N → InS is also

eventually periodic with the same period (in that 𝑝𝑡0+𝑡 = 𝑝𝑡1+𝑡 for all 𝑡), then we say

that 𝑠 has eventually periodic parameters.
The period of an eventually periodic trajectory is the smallest difference 𝑡1−𝑡0 between

times such that 𝑠𝑡0 = 𝑠𝑡1 .

Exercise 3.2.3.11. Formulate an analogous definition of eventually periodic orbit in the

differential systems theory. ♢

3.3 Behaviors of systems in the deterministic theory

In the previous Sections 3.2.1 to 3.2.3, we saw a number of different kinds of behaviors

of dynamical systems. Not only were there a lot of definitions in those sections, each

of those definitions had slight variants (like periodic orbits versus periodic orbits with
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periodic parameters, or steady states versus steady-looking trajectories). In this section,

we’ll define a general notion of behavior and see that we can package each of the above

sorts of behavior into a single system2 in its own right, one that represents that sort of

behavior. The representative system of a certain kind of behavior behaves in exactly

that way, and does nothing else.

We will begin, for concreteness, with the deterministic systems theory. We will then

return in the next section to see how we may formulate a general definition which also

encompasses the differential systems theory.

We begin with a general definition of chart. A behavior is defined relative to its

chart, which is the choice of parameters and the values of the variables it will expose.

For example, the chart of a steady state was a parameter and an output value so that

the state is steady given that parameter and it exposes that output value.

Definition 3.3.0.1. A chart
(
𝑓♭
𝑓

)
:

(
𝐴−

𝐴+

)
⇒

(
𝐵−

𝐵+

)
in a cartesian category C is a pair of

maps 𝑓 : 𝐴+ → 𝐵+ and 𝑓♭ : 𝐴+ × 𝐴− → 𝐵−. Note that this is not a lens. We refer to the

category of charts by ChartC

Exercise 3.3.0.2.
1. How many lenses are there

(
𝑓 ♯

𝑓

)
:

(
3
2

)
⇆

(
4
3

)
?

2. How many charts are there

(
𝑓 ♭

𝑓

)
:

(
3
2

)
⇒

(
4
3

)
? ♢

Exercise 3.3.0.3.
1. Show that a chart

(
1
1

)
⇒

(
𝐴−

𝐴+

)
is given by the data of a pair of elements 𝑎− ∈ 𝐴−

and 𝑎+ ∈ 𝐴+. Compare this to the notion of chart used in the definition of steady

state (Definition 3.2.2.1).

2. Show that a chart

(
1
N

)
⇒

(
𝐴−

𝐴+

)
is given by the data of a sequence 𝑎− : N → 𝐴+

and a sequence 𝑎+ : N → 𝐴+. Compare this to the notion of chart used in the

definition of trajectory (Definition 3.2.1.1)

♢

Definition 3.3.0.4 (Behavior of deterministic systems). Let T and S be deterministic

systems. Given a chart of interfaces

(
𝑓♭
𝑓

)
:

(
InT
OutT

)
⇒

(
InS
OutS

)
, a

(
𝑓♭
𝑓

)
-behavior of shape T

in S, written 𝜙 : T→ S, is a function 𝜙 : StateT → StateS sending states of T to states

of S which preserves the dynamics and exposed variables by satisfying the following

equations:

exposeS(𝜙(𝑡)) = 𝑓 (exposeT(𝑡)),
updateS(𝜙(𝑡), 𝑓♭(exposeT(𝑡), 𝑖)) = 𝜙(updateT(𝑡 , 𝑖))

(3.4)

2
Or a family of systems.
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for all 𝑡 ∈ StateT and 𝑖 ∈ InT. We say that

(
𝑓♭
𝑓

)
is the chart of the behavior 𝜙.

Remark 3.3.0.5. If you prefer commutative diagrams to systems of equations, don’t fret.

We’ll reinterpret Eq. (3.4) in terms of commutative diagrams in Section 3.5

Remark 3.3.0.6. Suppose that we have transition diagrams for systems T and S. Then a

behavior of shape T in S will correspond to part of the transition diagram of S which

is shaped like the transition diagram of T. See the upcoming examples for examples of

how this looks in practice.

Let’s make this definition feel real with a few examples.

Example 3.3.0.7. Let Time be the system

(
𝑡 ↦→𝑡+1

id

)
:

(
N
N

)
⇆

(
{tick}
N

)
, i.e. with

• StateTime B N,

• OutTime B N,

• InTime B {tick},
• exposeTime = id,

• updateTime(𝑡 , ∗) = 𝑡 + 1.

As a transition diagram, Time looks like this:

0 1 2 3 4 · · ·tick tick tick tick tick

Let’s see what a behavior of shape Time in an arbitrary system S will be. We will

expect the shape of Time to appear in the transition diagram of S, like this:

0 1 2 3 4 · · ·

...
...

...
...

...

First, we need to know what a chart

(
𝑓♭
𝑓

)
:

(
InTime

OutTime

)
⇒

(
InS
OutS

)
is like. Since

OutTime = N and InTime � 1, this means 𝑓 : N → OutS is a sequence of outputs, and

𝑓♭ : N× 1→ InS is a sequence of input parameters. We might as well instead call 𝑓 our
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sequence of exposed values 𝑣, and 𝑓♭ our sequence of input parameters 𝑝, so that we

have a chart

(
𝑝
𝑣

)
:

(
1
N

)
⇒

(
InS
OutS

)
.

Now, let’s see what a

(
𝑝
𝑣

)
-behavior 𝛾 : Time→ S is. It is a function 𝛾 : StateTime →

StateS satsifying some properties. But StateTime = N, so 𝛾 : N→ StateS is a sequence

of states in S. Now, Eq. (3.4) becomes the equations:

exposeS(𝛾(𝑡)) = 𝑣(𝑡)
updateS(𝛾(𝑡), 𝑝(𝑡)) = 𝛾(𝑡 + 1).

which are exactly the equations defining a

(
𝑝
𝑣

)
-trajectory from Definition 3.2.1.1!

Example 3.3.0.8. Consider the simple system Fix with:

• StateFix = {∗}.
• OutFix = {∗}.
• InFix = {∗}.
• exposeFix = id.

• updateFix(∗, ∗) = ∗.
As a transition diagram, this looks like:

∗∗

A behavior 𝑠 : Fix→ S in an arbitrary system S should be a loop of this shape within

the transition diagram of S: a steady state.

∗∗

Let’s check that this works. First, we need to know what a chart

(
𝑓♭
𝑓

)
:

(
InFix
OutFix

)
⇒(

InS
OutS

)
is. Since OutFix = InFix = {∗}, we have that 𝑓 : {∗} → OutS is simply an output

value of S and 𝑓♭ : {∗} × {∗} → InS is simply an input parameter. Therefore, we might

as well write 𝑜 for 𝑓 and 𝑖 for 𝑓♭, to see that a chart

(
𝑖
𝑜

)
:

(
{∗}
{∗}

)
⇒

(
InS
OutS

)
is a pair of

elements 𝑖 ∈ InS and 𝑜 ∈ OutS.
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Now, let’s see what a

(
𝑖
𝑜

)
-behavior 𝑠 : Fix→ S is. It is a function 𝑠 : StateFix → StateS

satisfying a few properties. But StateS = {∗} so 𝑠 : {∗} → StateS is a single state of S.

Then, Eq. (3.4) becomes the equations

exposeS(𝑠) = 𝑜

updateS(𝑠, 𝑖) = 𝑠

which are precisely the equations defining a

(
𝑖
𝑜

)
-steady state from Definition 3.2.2.1.

Example 3.3.0.9. Let 0 < 𝑛 ∈ N be a positive natural number, and consider the system

Clockn having:

• StateClockn = n = {1, . . . , 𝑛}.
• OutClockn = n.

• InClockn = {∗}.
• exposeClockn

= id.

• updateClockn
(𝑡 , ∗) =

{
𝑡 + 1 if 𝑡 < 𝑛

1 if 𝑡 = 𝑛
.

This is the clock with 𝑛 hours. Our example system Clock from Example 1.2.1.4 is

Clock12, a clock with 12 hours. Here’s what Clock4 looks like as a transition diagram:

1 2

3 4

∗

∗

∗

∗

A behavior 𝛾 : Clockn → S should be a cycle like this in the transition diagram of S:

a periodic orbit. We can see the Clock4-behavior inside the system shown right:

1 2

3 4

∗

∗

∗

∗

Let’s check that this works. First, we need to know what a chart

(
𝑓♭
𝑓

)
:

(
InClockn
OutClockn

)
⇒(

InS
OutS

)
is. SinceOutClockn = n and InClockn = {∗}, 𝑓 : n→ OutS is a sequence of 𝑛 exposed

values of S while 𝑓♭ : n× {∗} → InS is a sequence of 𝑛 parameters. Therefore, we might
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as well write 𝑣 for 𝑓 and 𝑝 for 𝑓♭ to find that a chart

(
𝑝
𝑣

)
:

(
{∗}
n

)
⇒

(
InS
OutS

)
consists of

an 𝑛-length sequence of parameters and an 𝑛-length sequence of exposed values.

A

(
𝑝
𝑣

)
-behavior 𝛾 : Clockn → S, then, is a function 𝛾 : StateClockn → StateS satisfying

a few properties. Since StateClockn = n, 𝛾 : n→ StateS is a 𝑛-length sequence of states

of 𝑆, and Eq. (3.4) become the equations

exposeS(𝛾(𝑡)) = 𝑣(𝑡)

updateS(𝛾(𝑡), 𝑝(𝑡)) =
{
𝛾(𝑡 + 1) if 𝑡 < 𝑛

𝛾(1) if 𝑡 = 𝑛
.

As we can see, this determines a sequence of length 𝑛 of states of S which repeats when

it gets to the end. In other words, this is a periodic orbit with periodic parameters as

in Definition 3.2.3.1!

If we have a certain kind of behavior in mind, and we find a system T so that

behaviors of shape T are precisely this kind of behavior, then we say that T represents
that behavior. For example, we have just seen that:

• The system Time =
(

_+1

id

)
:

(
N
N

)
⇆

(
{∗}
N

)
represents trajectories.

• The system Fix =
(
𝜋2

id

)
:

(
{∗}
{∗}

)
⇆

(
{∗}
{∗}

)
represents steady states.

• The systems Clockn =

(
_+1 mod 𝑛

id

)
:

(
n
n

)
⇆

(
{∗}
n

)
represents periodic orbits with

periodic parameters whose period divides 𝑛.

Note that there is always a particularly simple behavior on a system: the identity

behaviors id : StateT → StateT. This says that every system behaves as itself. In

particular, Time has a trajectory behavior given by id : Time → Time (namely, the

trajectory 𝑠𝑡 = 𝑡), and Fix has a steady state behavior given by id : Fix → Fix (namely,

the steady state ∗), etc. We refer to the identity behavior of T as the generic behavior of

type T.

Exercise 3.3.0.10. Find a representative system for the following kinds of behavior.

1. An eventually periodic orbit (see Definition 3.2.3.10) that takes 𝑛 steps to get to a

period of size 𝑚.

2. A steady-looking trajectory (see Definition 3.2.2.4).

3. A periodic orbit of period at most 𝑛 whose parameters aren’t necessarily also

periodic (see Definition 3.2.3.1).

4. A trajectory which yields the same output value at every 10
th

step, but can do

anything else in between. ♢

Remark 3.3.0.11. As Exercise 3.3.0.10 shows, the difference between a periodic orbit and

a periodic orbit with periodic parameters can be surmised precisely by noting that they

are represented by systems with different interfaces. The dynamics of the systems are

the same, but the interfaces (and accordingly, the exposed variable) are different; this
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explains how the difference between a periodic orbit and a periodic orbit with periodic

parameters is all in the chart.

Exercise 3.3.0.12. What kind of behaviors do the following systems represent? First,

figure out what kind of charts they have, and then see what a behavior with a given

chart is. Describe in your own words.

1. The system Plus with:

• StatePlus = N.

• OutPlus = N.

• InPlus = N.

• exposePlus = id.

• updatePlus(𝑡 , 𝑗) = 𝑡 + 𝑗.
2. The system Tn with:

• StateTn = N.

• OutTn = {0, . . . , 𝑛 − 1}.
• InTn = {∗}.
• exposeTn

(𝑡) = 𝑡 mod 𝑛.

• updateTn
(𝑡 , ∗) = 𝑡 + 1.

3. The system XOR with:

• StateXOR = Bool = {true, false}.
• OutXOR = Bool.

• InXOR = Bool.

• exposeXOR = id.

•

updateXOR(true, true) = false,

updateXOR(false, true) = true,

updateXOR(true, false) = true,

updateXOR(false, false) = false.

4. The system ListC for a set of choices 𝐶 with:

• StateListC = List𝐶 is the set of lists of elements in 𝐶.

• OutListC = List𝐶 .

• InListC = 𝐶.

• exposeListC
= id.

• updateListC
(ℓ , 𝑐) = 𝑐 :: ℓ , that is, we update a list by appending the character

𝑐 ∈ 𝐶 to the start.

♢

While every system T represents some kind of behavior — just take the kind of

behavior to be exactly described by behaviors T→ S — we are most interested in those

simple systems T whose behavior we can fully understand.
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We have written a behavior of shape T in S with an arrow 𝜙 : T→ S. This suggests

that there is a category with deterministic systems as its objects and behaviors as its

morphisms; and there is!

Definition 3.3.0.13. The category ChartC of charts in C has

• Objects the arenas
(
𝐴−

𝐴+

)
, pairs of objects in C.

• Maps the charts
(
𝑓♭
𝑓

)
:

(
𝐴−

𝐴+

)
⇒

(
𝐵−

𝐵+

)
.

• Composition the composite of a chart

(
𝑓♭
𝑓

)
:

(
𝐴−

𝐴+

)
⇒

(
𝐵−

𝐵+

)
with a chart

(
𝑔♭
𝑔

)
:(

𝐵−

𝐵+

)
⇒

(
𝐶−

𝐶+

)
is (

𝑓♭

𝑓

)
#

(
𝑔♭

𝑔

)
B

(
(𝑎+ , 𝑎−) ↦→ 𝑔♭( 𝑓 (𝑎+), 𝑓♭(𝑎+ , 𝑎−))

𝑓 # 𝑔

)
.

• The identity chart is

(
𝜋2

id

)
:

(
𝐴−

𝐴+

)
⇒

(
𝐴−

𝐴+

)
.

Exercise 3.3.0.14. Check that ChartC is indeed a category. That is,

1. For charts

(
𝑓♭
𝑓

)
:

(
𝐴−

𝐴+

)
⇒

(
𝐵−

𝐵+

)
,

(
𝑔♭
𝑔

)
:

(
𝐵−

𝐵+

)
⇒

(
𝐶−

𝐶+

)
, and

(
ℎ♭
ℎ

)
:

(
𝐶−

𝐶+

)
⇒

(
𝐷−

𝐷+

)
,

show that (
𝑓♭

𝑓

)
#

((
𝑔♭

𝑔

)
#

(
ℎ♭

ℎ

))
=

((
𝑓♭

𝑓

)
#

(
𝑔♭

𝑔

))
#

(
ℎ♭

ℎ

)
.

2. For a chart

(
𝑓♭
𝑓

)
:

(
𝐴−

𝐴+

)
⇒

(
𝐵−

𝐵+

)
, show that(

𝜋2

id

)
#

(
𝑓♭

𝑓

)
=

(
𝑓♭

𝑓

)
=

(
𝑓♭

𝑓

)
#

(
𝜋2

id

)
.

♢

In Proposition 2.6.2.5, we showed that the category of lenses is the Grothendieck

construction of the pointwise opposite of the indexed category of maps with context.

This may lead you to wonder: what is the the Grothendieck construction of the indexed

category of maps with context, without taking the pointwise opposite. It is in fact

precisely the category of charts.

Proposition 3.3.0.15. The category ChartC of charts in C is the Grothendieck construc-

tion of the indexed category of maps with context:

ChartC =

∫ 𝐶:C

Ctx𝐶 .
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Proof. This comes down to checking that the definitions line up. The two categories

have the same objects and the same morphisms. It remains to check that composition

in the Grothendieck construction is as defined above in Definition 3.3.0.13. To that end,

note that the function

(𝑎+ , 𝑎−) ↦→ 𝑔♭( 𝑓 (𝑎+), 𝑓♭(𝑎+ , 𝑎−))

may be written as

𝑓♭ # ( 𝑓 ∗𝑔♭)

in Ctx𝐴+ . □

Exercise 3.3.0.16. What are the charts of the following forms in simpler terms?

1.

(
𝑓♭
𝑓

)
:

(
1
1

)
⇒

(
𝐴−

𝐴+

)
.

2.

(
𝑓♭
𝑓

)
:

(
𝐴−

𝐴+

)
⇒

(
1
1

)
.

3.

(
𝑓♭
𝑓

)
:

(
1
𝐴+

)
⇒

(
𝐵−

𝐵+

)
.

♢

Proposition 3.3.0.17. There is a category Sys with deterministic systems as its objects

and where a map T → S is a pair consisting of a chart

(
𝑓♭
𝑓

)
:

(
InT
OutT

)
⇒

(
InS
OutS

)
and a(

𝑓♭
𝑓

)
-behavior 𝜙 : T→ S. Composition is given by composing both the charts and the

functions on states, and identities are given by the generic behaviors: the identity chart

with the identity function id : StateT → StateT.

Proof. We just need to check that the composite 𝜓 ◦ 𝜙 of two behaviors 𝜙 : T → S

and 𝜓 : S → U with charts

(
𝑓♭
𝑓

)
:

(
InT
OutT

)
⇒

(
InS
OutS

)
and

(
𝑔♭
𝑔

)
:

(
InS
OutS

)
⇒

(
InU
OutU

)
is a

behavior with chart

(
𝑔♭
𝑔

)
◦

(
𝑓♭
𝑓

)
. That is, we need to check that Eq. (3.4) is satisfied for

𝜓 ◦ 𝜙. We can do this using the fact that it is satisfied for both 𝜓 and 𝜙.

exposeU(𝜓(𝜙(𝑡))) = 𝜓(exposeS(𝜙(𝑡)))
= 𝜓(𝜙(exposeT(𝑡))).

updateU(𝜓(𝜙(𝑡)),𝑔♭( 𝑓 (exposeT(𝑡)), 𝑓♭(exposeT(𝑡), 𝑖)))
= updateU(𝜓(𝜙(𝑡)), 𝑔♭(exposeS(𝜙(𝑡)), 𝑓♭(exposeT(𝑡), 𝑖)))
= 𝜓(updateS(𝜙(𝑡), 𝑓♭(exposeT(𝑡), 𝑖)))
= 𝜓(𝜙(updateT(𝑡 , 𝑖))). □

There are two different ways to understand what composition of behaviors means:

one based on post-composition, and the other based on pre-composition.
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• We see that any behavior S→ U gives a way of turning T-shaped behaviors in S

to T-shaped behaviors in U.

• We see that any behavior T→ S gives a way of turning S-shaped behaviors in U

into T-shaped behaviors in U.

Example 3.3.0.18. Any steady state 𝑠 can be seen as a particularly simple trajectory:

𝑠𝑡 = 𝑠 for all 𝑡. We have seen in Example 3.3.0.8 that steady states are Fix-shaped

behaviors. We can use composition of behaviors to understand how steady states give

rise to trajectories.

The generic steady state ∗ of Fix (that is, the identity behavior of Fix) generates a

trajectory 𝑠 : N → StateFix with input parameters 𝑝𝑡 = ∗ and 𝑠𝑡 = ∗. This gives us a

behavior 𝑠 : Time→ Fix.

Now, for every steady state 𝛾 : Fix → S, we may compose to get a trajectory

𝛾 ◦ 𝑠 : Time→ S.

Exercise 3.3.0.19. Adapt the argument of Example 3.3.0.18 to show that

1. Any eventually periodic orbit gives rise to a trajectory.

2. If 𝑛 divides 𝑚, then any orbit of period at most 𝑛 gives rise to an orbit of period

of most 𝑚. ♢

Isomorphisms of Systems Now that we have a category of systems and behaviors,

category theory supplies us with a definition of isomorphism for systems.

Definition 3.3.0.20. An isomorphism of a system T with a system S is a a behavior

𝜙 : T→ S for which there is another behavior 𝜙−1
: S→ T such that 𝜙 ◦ 𝜙−1 = idS and

𝜙−1 ◦ 𝜙 = idT.

Let’s see that this is indeed a good notion of sameness for systems.

Proposition 3.3.0.21. A behavior 𝜙 : T → S is an isomorphism if and only if the

following conditions hold:

1. The map 𝜙 : StateT → StateS is an isomorphism of sets — a bĳection.

2. The chart

(
𝑓♭
𝑓

)
:

(
InT
OutT

)
⇒

(
InS
OutS

)
of 𝜙 is an isomorphism in ChartSet. That is,

𝑓 : OutT → OutS is a bĳection and there is a bĳection 𝑓 ′
♭

: InT → OutT such that

𝑓♭ = 𝑓 ′
♭
◦ 𝜋2.

Proof. Since composition in the category of systems and behaviors is given by compo-

sition of the underlying charts and maps, 𝜙 is an isomorphism of systems if and only

if its action on states is a bĳection and its chart is an isomorphism in the category of

charts. It just remains to see that our description of isomorphism of charts is accurate,

which we leave to Exercise 3.3.0.22. □
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Exercise 3.3.0.22. Show that a chart

(
𝑓♭
𝑓

)
:

(
𝐴−

𝐴+

)
⇒

(
𝐵−

𝐵+

)
is an isomorphism if and

only if 𝑓 is an isomorphisms and there is an isomorphism 𝑓 ′
♭

: 𝐴− → 𝐵− such that

𝑓♭ = 𝑓 ′
♭
◦ 𝜋2. ♢

3.3.1 Simulations

While we will often be interested in behaviors of systems that change the interface in

the sense of having non-trivial charts, we will also be interested in behaviors of systems

that do not changed the exposed variables at all. These behaviors play a very different

role in the theory of dynamical systems than behaviors like trajectories and steady

states. Because they don’t change observable behavior (since they have identity chart),

they say more about how we model the observable behavior than what that behavior is

itself. For that reason, we will call behaviors with identity chart simulations.

Definition 3.3.1.1. Let

(
𝐼
𝑂

)
be an arena. The category

Sys

(
𝐼

𝑂

)
of deterministic

(
𝐼
𝑂

)
-systems has as objects the systems

(
updateS
exposeS

)
:

(
StateS
StateS

)
⇆

(
𝐼
𝑂

)
with interface

(
𝐼
𝑂

)
and as maps the simulations 𝜙 : T→ S, those behaviors whose chart

is the identity chart on

(
𝐼
𝑂

)
.

Example 3.3.1.2. Recall the

(
{green,orange}

{𝑎,𝑏}

)
-system S from Example 1.2.1.8:

1

𝑎
2

𝑏

3

𝑏

If we had built this system as a model of some relationships between input colors

and output letters we were seeing in the wild, then we have made this system a bit

redundant. If the output is 𝑎, and we feed it green, the output will be 𝑏; if we feed it

orange, the output will be 𝑎. Similarly, if the output is 𝑏 — no matter which of states

2 or 3 the system is actually in — and we feed it green, the output will again be 𝑏, and
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if we feed it orange, the output will be 𝑎. And there really isn’t much else going on in

the system.

We can package this observation into a behavior in Sys
(
{green,orange}

{𝑎,𝑏}

)
. Let U be the

system

1

𝑎
2

𝑏

We can give a behavior 𝑞 : S→ U with identity chart as follows defined by

𝑞(1) = 1

𝑞(2) = 2

𝑞(3) = 2

We can check, by cases, that this is indeed a behavior. That it is a behavior in

Sys
(
{green,orange}

{𝑎,𝑏}

)
means that it doesn’t change the observable behavior.

Example 3.3.1.2 also gives us an example of an important relation between systems:

bisimulation. We saw what it means for two systems to be isomorphic: it means they

have isomorphic states and the same dynamics and output relative to those isomor-

phisms. But this is sometimes too strong a notion of sameness for systems; we want to

know when two systems look the same on the outside.

Let’s see what this notion looks like for deterministic systems; then we will describe

it in a doctrinal way.

Definition 3.3.1.3. In the deterministic systems theory, a bisimulation ∼ between

(
𝐼
𝑂

)
-

systems S and U is a relation ∼: StateS × StateU → {true, false} between states of

these systems such that 𝑠 ∼ 𝑢 only when 𝑠 and 𝑢 have related dynamics:

𝑠 ∼ 𝑢 implies exposeS(𝑠) = exposeU(𝑢)
𝑠 ∼ 𝑢 implies updateS(𝑠, 𝑖) ∼ updateU(𝑢, 𝑖) for all 𝑖 ∈ 𝐼.

If ∼ is a bisimulation, we say that 𝑠 and 𝑢 are bisimilar when 𝑠 ∼ 𝑢.

A bisimulation ∼ is said to be total if every 𝑠 ∈ StateS is bisimilar to some 𝑢 ∈ StateU
and vice-versa.

Bisimilarity is a strong relation between states of systems. For deterministic systems,

this implies that they act the same on any input.
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Proposition 3.3.1.4. Let S and U be deterministic

(
𝐼
𝑂

)
-systems, and let ∼ be a bisimu-

lation between them. If 𝑠0 ∼ 𝑢0 are bisimilar, then they induce the same transformation

on streams of inputs into streams of outputs:

transform
𝑠0
S
= transform

𝑢0

U
.

Proof. Let 𝑖 : N → 𝐼 be a stream of inputs. Let 𝑠 : N → StateS be the stream of states

generated by 𝑠0 and similarly, let 𝑢 : N → StateU be the stream of states generated by

𝑢0.

We first show that 𝑠𝑛 ∼ 𝑢𝑛 for all 𝑛. Our base case holds by hypothesis; now suppose

that 𝑠𝑛 ∼ 𝑢𝑛 seeking 𝑠𝑛+1 ∼ 𝑢𝑛+1. Well,

𝑠𝑛+1 = updateS(𝑠𝑛 , 𝑖𝑛) ∼ updateU(𝑢𝑛 , 𝑖𝑛) = 𝑢𝑛+1

because ∼ is a bisimulation.

Finally,

transformS(𝑖)𝑛 = exposeS(𝑠𝑛) = exposeU(𝑢𝑛) = transformU(𝑖)𝑛

because 𝑠𝑛 ∼ 𝑢𝑛 . □

We can talk about bisimilar states without reference to the particular bisimulation

between the systems they are a part of because, as it turns out, being bisimilar is

independent of the particular bisimulation. To see this, we need to introduce an

interesting system: the system of trees.

Definition 3.3.1.5. Let

(
𝐼
𝑂

)
be an arena in the deterministic systems theory. An

(
𝐼
𝑂

)
-

tree 𝜏 (or a 𝑂-labeled, 𝐼-branching tree) consists of:

• A root root(𝜏) ∈ 𝑂.

• For each parameter 𝑖 ∈ 𝐼, a child tree child(𝜏, 𝑖).

Definition 3.3.1.6. Let

(
𝐼
𝑂

)
be an arena in the deterministic systems theory. The

(
𝐼
𝑂

)
-

system Tree(
𝐼
𝑂

)
of

(
𝐼
𝑂

)
-trees has

• StateTree is the set of

(
𝐼
𝑂

)
-trees.

• Each tree exposes its root: exposeTree(𝜏) = root(𝜏).
• The system updates by following a tree down the 𝑖th branch: updateTree(𝜏, 𝑖) =

child(𝜏, 𝑖)

We can think of an

(
𝐼
𝑂

)
-tree as a stream of possible outputs of an

(
𝐼
𝑂

)
-system. In

the current state, we see the root of the tree. When we transition to the next state with

parameter 𝑖, we will see the rest of the output. This observation suggests a universal

characterization of the system of

(
𝐼
𝑂

)
-trees.
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Proposition 3.3.1.7. The

(
𝐼
𝑂

)
-system Tree(

𝐼
𝑂

)
of

(
𝐼
𝑂

)
-trees is terminal in the category

of

(
𝐼
𝑂

)
-systems.

Proof. We will show that there is a unique simulation !S : S → Tree(
𝐼
𝑂

)
for any

(
𝐼
𝑂

)
-

system S. For any 𝑠 ∈ StateS, we will define a tree !S(𝑠) of outputs visible from the state

𝑠. We define this as follows:

• The root of !S(𝑠) is the variable exposed by S:

root(!S(𝑠)) = exposeS(𝑠).

• The 𝑖th child of !S(𝑠) is the tree of outputs visible from the next state updateS(𝑠, 𝑖):

child(!S(𝑠), 𝑖) =!S(updateS(𝑠, 𝑖)).

Now, we can show that this is a simulation and that it is the unique such similation by

noticing that this definition is precisely what is required to satisfy the defining laws of

a simulation. □

Now we can express the idea that bisimilarity of states is independent of any par-

ticular bisimulation between their systems with the following theorem.

Theorem 3.3.1.8. Let S and U be

(
𝐼
𝑂

)
-systems. A state 𝑠 ∈ StateS is bisimilar to a state

𝑢 ∈ StateU for some bisimulation ∼ between S and U if and only if !S(𝑠) =!U(𝑢).

Proof. First, let’s show that if 𝑠 is bisimilar to 𝑢 via some bisimulation ∼, then !S(𝑠) =
!U(𝑢). Now, to show that two trees are equal, we need to show that they have equal

roots and equal children.

• The root of !S(𝑠) is exposeS(𝑠), and the root of !U(𝑢) is exposeU(𝑢). But since 𝑠 ∼ 𝑢
by hypothesis, these are equal.

• Similarly, the 𝑖th child of !S(𝑠) is !S(updateS(𝑠, 𝑖)), while the 𝑖th child of !U(𝑢) is

!U(updateU(𝑢, 𝑖)). But since ∼ is a bisimulation, we have that updateS(𝑠, 𝑖) ∼
updateU(𝑢, 𝑖), and so by the same argument we are giving, we will find that

!S(updateS(𝑠, 𝑖)) =!U(updateU(𝑢, 𝑖)).3
On the other hand, suppose that !S(𝑠) =!U(𝑢). We now need to define a bisimulation

∼ between S and U for which 𝑠 ∼ 𝑢. For any sequence of inputs 𝑖 : n→ 𝐼, we can evolve

a system in state 𝑠 by the entire sequence 𝑖 to yield a state update
∗
S(𝑠, 𝑖) in the following

way:

• If 𝑛 = 0, then update
∗
S(𝑠, 𝑖) = 𝑠.

3
This style of proof is called proof by co-induction. Where induction assumes a base case and then

breaks apart the next step into a smaller step, co-induction shows that the proof can always be continued

in a manner which covers all possible options.
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• For 𝑛 + 1, then update
∗
S(𝑠, 𝑖) = updateS(update

∗
S(𝑠, 𝑖 |n), 𝑖𝑛+1).

We may then define ∼ in the following way.

𝑥 ∼ 𝑦 if and only if there is an 𝑛 ∈ N and 𝑖 : n→ 𝐼 with 𝑥 = update
∗
S(𝑠, 𝑖) and

𝑦 = update
∗
U(𝑢, 𝑖).

It remains to show that this is a bisimulation.

For any

(
𝐼
𝑂

)
-tree 𝜏 and any 𝑛-length sequence 𝑖 : n → 𝐼 of parameter (for any

𝑛 ∈ N), we can follow the path 𝑖 through the tree 𝜏 to get a new tree subtree(𝜏, 𝑖):
• If 𝑛 = 0, then subtree(𝜏, 𝑖) = 𝜏.

• For 𝑛 + 1, subtree(𝜏, 𝑖) = child(subtree(𝜏, 𝑖 |n)) is the 𝑖th child of the tree found by

following 𝑖 for the first 𝑛 steps.

Note that !S(update
∗
S(𝑠, 𝑖)) = subtree(!S(𝑠), 𝑖) by a quick inductive argument. Now we

can show that ∼ is a bisimulation.

• Suppose that 𝑥 ∼ 𝑦, seeking to show that exposeS(𝑥) = exposeU(𝑦). By hypothe-

sis, 𝑥 = update
∗
S(𝑠, 𝑖) and 𝑦 = update

∗
U(𝑢, 𝑖). But then

exposeS(𝑥) = root(!S(𝑥))
= root(subtree(!S(𝑠), 𝑖))
= root(subtree(!U(𝑢), 𝑖))
= root(!U(𝑦))
= exposeU(𝑦).

• Suppose that 𝑥 ∼ 𝑦, seeking to show that updateS(𝑥, 𝑗) ∼ updateU(𝑦, 𝑗). By

hypothesis, 𝑥 = update
∗
S(𝑠, 𝑖) and same for 𝑦 = update

∗
U(𝑢, 𝑖). Then letting 𝑖′ :

n + 1→ Nbe defined by 𝑖′
𝑛+1

= 𝑗 and 𝑖′
𝑘
= 𝑖𝑘 otherwise, we see that updateS(𝑥, 𝑗) =

update
∗
S(𝑠, 𝑖′) and updateU(𝑦, 𝑗) = update

∗
U(𝑦, 𝑖′), so that by definition they are

related by ∼.

□

3.4 Dealing with two kinds of composition: Double
categories

In this section, we will introduce the notion of double category to help us deal with

our two kinds of composition: the composition of systems, and the composition of

behaviors. By revealing that Definition 3.3.0.4 can be expressed as a square in a double

category of arenas, we will find a generalization of this definition of behavior which

applies to the differential systems theory as well. It is at this point that we will introduce

the formal definition of a theory of dynamical systems.
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Definition 3.4.0.1. A double category D has:

• A class obD of objects.
• A horizontal category ℎD whose objects are those of D. We call the maps in ℎD

the horizontal maps of D.

• A vertical category 𝑣D whose objects are those of D. We call the maps in 𝑣D the

vertical maps of D.

• For vertical maps 𝑗 : 𝐴→ 𝐵 and 𝑘 : 𝐶 → 𝐷 and horizontal maps 𝑓 : 𝐴→ 𝐶 and

𝑔 : 𝐵→ 𝐷, there is a set of squares

𝐴 𝐵

𝛼

𝐶 𝐷

𝑗

𝑓

𝑘

𝑔

• Squares can be composed both horizontally and vertically:

𝐴1 𝐴2 𝐴3

𝛼 𝛽

𝐵1 𝐵2 𝐵3

𝑗

𝑓1

𝑘

𝑓2

ℓ

𝑔1 𝑓2

↦→

𝐴1 𝐴3

𝛼 | 𝛽

𝐵1 𝐵3

𝑗

𝑓2 𝑓1

ℓ

𝑔2𝑔1

𝐴1 𝐴2

𝛼

𝐵1 𝐵2

𝛽

𝐶1 𝐶2

𝑗1

𝑓

𝑘1

𝑗2

𝑔

𝑘2

ℎ

↦→

𝐴1 𝐴2

𝛼
𝛽

𝐶1 𝐶2

𝑗2 𝑗1

𝑓

𝑘2𝑘1

ℎ

• For every vertical map 𝑗 : 𝐴→ 𝐵, there is an identity square

𝐴 𝐴

𝑗

𝐵 𝐵

𝑗 𝑗

which we will also refer to as 𝑗, for convenience. Similarly, for every horizontal
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map 𝑓 : 𝐴→ 𝐵, there is an identity square

𝐴 𝐵

𝑓

𝐴 𝐵

𝑓

𝑓

which we will also refer to as 𝑓 , for convenience.

• Vertical and horizontal composition is associative and unital, and the interchange
law holds. That is:

– For horizontally composable squares 𝛼, 𝛽, and 𝛾,

(𝛼 | 𝛽) | 𝛾 = 𝛼 | (𝛽 | 𝛾).

– For vertically composable squares 𝛼, 𝛽, and 𝛾,
a(

𝛼

𝛽

)
𝛾

=

𝛼(
𝛾

𝛽

)
– For a square 𝛼 with left and right vertical edges 𝑗 and 𝑘 respectively,

𝑗 | 𝛼 = 𝛼 = 𝛼 |𝑘.

– For a square 𝛼 with top and bottom horizontal edges 𝑓 and 𝑔,

𝑓

𝛼
= 𝛼 =

𝛼
𝑔
.b

– For four appropriately composable squares 𝛼, 𝛽, 𝛾, and 𝛿, the following

interchange law holds:

𝛼 | 𝛽
𝛾 | 𝛿 =

𝛼
𝛽

����𝛾𝛿 .

a
If you’re seeing this and feeling worried about fractions, you can put your mind at ease; we promise

there will be no fractions. Only squares next to squares.

b
There aren’t any fractions here either.

Phew, that was quite the definition! The reason the definition of a double category

is so much more involved than the definition of a category is that there is more than

twice the data: there’s the vertical category and the horizontal category, but also how

they interact through the squares.

Remark 3.4.0.2. Just like we notate the identity square on a vertical morphism 𝑗 by 𝑗 and

the identity square on a horizontal morphism 𝑓 by 𝑓 , we will often denote composition

of vertical morphisms by
𝑓

𝑔 and of horizontal morphisms by 𝑗 | 𝑘. This notation agrees
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with the composition of their respective identity squares, and will be much more

pleasant to look at when writing equations.

Let’s see a few important examples of double categories.

3.4.1 The double category of arenas in the deterministic systems theory

Finally, we are ready to meet the double category of arenas in the deterministic systems

theory. This is where our dynamical systems live, and where they behave.

Definition 3.4.1.1. The double category of arenas in the deterministic systems theory is a

double category which has:

• Its objects are the arenas, pairs of sets

(
𝐴−

𝐴+

)
.

• Its horizontal category is the category of charts.

• Its vertical category is the category of lenses.

• There is a square of the following form

(
𝐴−

𝐴+

) (
𝐵−

𝐵+

)

(
𝐶−

𝐶+

) (
𝐷−

𝐷+

)

©­«
𝑓♭

𝑓

ª®¬
©­«
𝑗♯

𝑗

ª®¬ ©­«
𝑘♯

𝑘

ª®¬
©­«
𝑔♭

𝑔

ª®¬

(3.5)

if and only if the following equations hold:

𝑔(𝑗(𝑎+)) = 𝑘( 𝑓 (𝑎+)) (3.6)

𝑘♯( 𝑓 (𝑎+), 𝑔♭(𝑗(𝑎+), 𝑐−)) = 𝑓♭(𝑎+ , 𝑗♯(𝑎+ , 𝑐−)) (3.7)

for all 𝑎+ ∈ 𝐴+ and 𝑐− ∈ 𝐶−.

It’s not obvious from this definition that we actually get a double category with

this definition. It’s not even clear that we have defined a way to compose the squares

vertically and horizontally.

It turns out we don’t need to know anything else to know that we can compose these

squares, at least in principle. This is because there is at most one square filling any two

charts and two lenses that line up as in Eq. (3.5); to compose these squares just means

that if we have two such squares lining up, the defining equations Eq. (3.6) hold also

for the appropriate composites. We call double categories with this property thin.



128 CHAPTER 3. HOW SYSTEMS BEHAVE

Definition 3.4.1.2. A double category is thin if there is at most one square of any

signature.

So long as composition is well defined in a thin double category, the laws of asso-

ciativity and interchange for square composition come for free; there is at most one

square of the appropriate signature, so any two you can write down are already equal.

We do still have to show that composition is well defined in this way, which we’ll do a

bit more generally in Definition 3.5.0.6

Remark 3.4.1.3. While the definition of double category we gave treated both horizontal

and vertical directions the same, we will often want to see a square

𝐴 𝐵

𝛼

𝐶 𝐷

𝑗

𝑓

𝑘

𝑔

as a sort of map 𝛼 : 𝑗 → 𝑘 from its left to its right side, or a map 𝛼 : 𝑓 → 𝑔 from its

top to its bottom side. For example, the systems themselves are certain lenses (vertical

maps), and the behaviors are squares between them. On the other hand, we can also

see a square as a way of wiring together charts.

Example 3.4.1.4. A square

(
𝐴−

𝐴+

) (
𝐵−

𝐵+

)

(
𝐶−

𝐶+

) (
𝐷−

𝐷+

)

©­«
𝑓♭

𝑓

ª®¬
©­«
𝑗♯

𝑗

ª®¬ ©­«
𝑘♯

𝑘

ª®¬
©­«
𝑔♯

𝑔

ª®¬

(3.8)

can be seen as a chart between lenses, that is, two charts which are compatible according

to the wiring pattern the lenses describe. For example, consider a square of the
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following form where

(
𝑤♯

𝑤

)
is a wiring diagram:

(
1

1

) (
𝐵−

𝐵+

)

(
1

1

) (
𝐷−

𝐷+

)

©­«
𝑏−

𝑏+
ª®¬

©­«
𝑤♯

𝑤

ª®¬
©­«
𝑑−

𝑑+
ª®¬

By Exercise 3.3.0.16, we know that the charts in this diagram are pairs of elements

(
𝑏−

𝑏+

)
and

(
𝑑−

𝑑+

)
in the arenas

(
𝐵−

𝐵+

)
and

(
𝐷−

𝐷+

)
respectively. The square then says that

(
𝑑−

𝑑+

)
are the values you would get if you passed

(
𝑏−

𝑏+

)
along the wires in the wiring diagram(

𝑤♯

𝑤

)
:

𝑤(𝑏+) = 𝑑+ ,

𝑤♯(𝑏+ , 𝑑−) = 𝑏−.

Taking for granted that the double category of arenas is indeed a double category,

what does this mean for systems? Well, behaviors are particular squares in the double

category of arenas.

Proposition 3.4.1.5. Let T and S be dynamical systems. A behavior 𝜙 : T → S is

equivalently a square of the following form in the double category of arenas:

(
StateT

StateT

) (
StateS

StateS

)

(
InT

OutT

) (
InS

OutS

)

©­«
𝜙◦𝜋2

𝜙

ª®¬
©­«
updateT

exposeT

ª®¬ ©­«
updateS

exposeS

ª®¬
©­«
𝑓 ♯

𝑓

ª®¬

(3.9)

Proof. This is a simple matter of checking the definitions against eachother. The

defining equations of Definition 3.4.1.1 specialize to the defining equations of Defi-

nition 3.3.0.4. □
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This re-expression of the notion of behavior in terms of the double category of

arenas will let us generalize from the deterministic systems theory to other systems

theories.

3.4.2 The double category of sets, functions, and matrices

Now we turn to our second double category of interest, the double category of sets,

functions, and matrices of sets.

Jaz: Where did I first define a matrix of sets? If it’s before this, I should reference it.

If it’s after this, I should just introduce it here instead.

Definition 3.4.2.1. The double category Matrix of sets, functions, and matrices of sets

is defined by:

• Its objects are sets.

• Its horizontal category is the category of sets and functions.

• Its vertical category is the category of sets and matrices of sets, where composition

is given by matrix multiplication. We write 𝑀 : 𝐴 → 𝐵 to say that 𝑀 is a 𝐵 × 𝐴
matrix.

• For functions 𝑓 : 𝐴→ 𝐵 and 𝑔 : 𝐶 → 𝐷 and matrices 𝑀 : 𝐴→ 𝐶 and𝑁 : 𝐵→ 𝐷,

a square

𝐴 𝐵

𝛼

𝐶 𝐷

𝑀

𝑓

𝑁

𝑔

is a family of functions 𝛼𝑏𝑎 : 𝑀𝑏𝑎 → 𝑁𝑔(𝑏) 𝑓 (𝑎) for all 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵.

• Horizontal composition of squares is given by composition of the families:

(𝛼 |𝛽)𝑏𝑎 = 𝛽𝑔(𝑏) 𝑓 (𝑎) ◦ 𝛼𝑏𝑎 .

• Vertical composition of squares

𝐴1 𝐵1

𝛼

𝐴2 𝐵2

𝛽

𝐴3 𝐵3

𝑀1

𝑓

𝑁1

𝑀2

𝑔

𝑁2

ℎ
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is given by (
𝛼
𝛽

)
𝑎𝑐

:

∑
𝑏1∈𝐵1

𝑀2

𝑐𝑏1

×𝑀1

𝑏1𝑎
→

∑
𝑏2∈𝐵2

𝑁2

ℎ(𝑐)𝑏2

× 𝑁1

𝑏2 𝑓 (𝑎)

(𝑏1 , 𝑚2 , 𝑚1) ↦→ (𝑔(𝑏1), 𝛽(𝑚2), 𝛼(𝑚1)).

Exercise 3.4.2.2. We can see that horizontal composition of squares is associative and

unital since it is basically just function composition. Show that Matrix is a double

category by checking that

1. Vertical composition of squares is associative and unital (up to isomorphism).

2. The interchange law holds.

♢

There is another useful way to express the double category of matrices in terms of

pullbacks: spans. A span of sets from 𝐴 to 𝐵 is a diagram

𝑆

𝐴 𝐵

𝑠𝐴 𝑠𝐵

We can think of this as a matrix of sets by sending any 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 to the set

𝑆𝑏𝑎 = {𝑥 ∈ 𝑆 | 𝑎 = 𝑠𝐴(𝑥) and 𝑠𝐵 = 𝑏}. And to any (𝐵 × 𝐴)-matrix 𝑀 of sets, we can

associate the span ∑
(𝑎,𝑏)∈𝐴×𝐵𝑀𝑏𝑎

𝐴 𝐵

𝜋1 𝜋2

with the disjoint union of all 𝑀𝑏𝑎 at the top, with the two maps begin the projections

onto 𝐴 and 𝐵 respectively.

The composition of matrices can be represented in terms of spans as well. Given

the spans 𝑆 from 𝐴 to 𝐵 and 𝑇 from 𝐵 to 𝐶, we can define their composite span
𝑆
𝑇 from

𝐴 to 𝐶 by taking the pullback:

𝑆 ×𝐵 𝑇

𝑆 𝑇

𝐴 𝐵 𝐶

𝑠𝐴 𝑠𝐵 𝑡𝐵 𝑡𝐶

𝜋1 𝜋2

( 𝑆𝑇 )𝐴 ( 𝑆𝑇 )𝐶⌜

where

𝑆 ×𝐵 𝑇 = {(𝑥, 𝑦) ∈ 𝑆 × 𝑇 | 𝑠𝐵(𝑥) = 𝑡𝐵(𝑦)}.

A bit of thinking shows that this corresponds to the composite of matrices.
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Exercise 3.4.2.3. Let 𝑀 be an (𝐴 × 𝐵)-matrix and 𝑁 be a (𝐵 × 𝐶)-matrix. Consider the

following diagram: ∑
(𝑎,𝑐)

(
𝑀
𝑁

)
𝑐𝑎

∑
(𝑎,𝑏)𝑀𝑏𝑎

∑
(𝑏,𝑐) 𝑁𝑐𝑏

𝐴 𝐵 𝐶

𝑠𝐴 𝑠𝐵 𝑡𝐵 𝑡𝐶

⌜

Show that there are dashed maps as in the above diagram so that the square is a

pullback. This shows that the composition of matrices corresponds to the composition

of spans. ♢

One nice feature that spans have over matrices is that they work for things other

than sets. We can take spans in any category with pullbacks. We’ll record the double

category of spans here.

Definition 3.4.2.4. Let C be a category with pullbacks. The double category Span(C)
is defined by:

• Its objects are the objects of C.

• Its horizontal category is C.

• Its vertical category has as morphisms 𝑆 : 𝐴→ 𝐵 the spans

𝑆

𝐴 𝐵

𝑠𝐴 𝑠𝐵

and these are composed by pullback.

• A square

𝐴 𝐵

𝛼

𝐶 𝐷

𝑀

𝑓

𝑁

𝑔

is a map 𝛼 so that

𝐴 𝐵

𝑆 𝑇

𝐶 𝐷

𝑓

𝑔

𝑠𝐴

𝑠𝐶

𝑡𝐵

𝑡𝐷

𝛼 commutes.

• Horizontal composition of squares is by composing in C.
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• Vertical composition of squares follows from the functoriality of the pullback:

𝐴1 𝐵1

𝑆1 𝑇1

𝐴2 𝐵2

𝑆2 𝑇2

𝐴3 𝐵3

𝑓1

𝑓2

𝛼

𝛽

↦→

𝐴1 𝐵1

𝑆1 ×𝐴2
𝑆2 𝑇1 ×𝐵2

𝑇2

𝐴3 𝐵3

𝑓1

𝑓3

𝛼
𝛽

3.4.3 The double category of categories, profunctors, and functors

Now we come to the primordial double category: the double category of categories,

profunctors, and functors. This is an important double category because it is in some

sense the setting in which all category theory takes place. Before we describe this

double category, let’s define the notion of profunctor and their category.

Definition 3.4.3.1. A profunctor 𝑃 : A B is a functor 𝑃 : Aop × B → Set. Given

objects 𝐴 ∈ A and 𝐵 ∈ B, we write an element 𝑝 ∈ 𝑃(𝐴, 𝐵) as 𝑝 : 𝐴 𝐵.

In terms of this, the functoriality of 𝑃 can be seen as letting us compose 𝑝 : 𝐴 𝐵

on the left and right by 𝑓 : 𝐴′ → 𝐴 and 𝑔 : 𝐵 → 𝐵′ to get 𝑓 𝑝𝑔 : 𝐴′ 𝐵′. In other

words, we can interpret a diagram of this form

𝐴′
𝑓
−→ 𝐴

𝑝
𝐵

𝑔
−→ 𝐵′

as an element of 𝑃(𝐴′, 𝐵′).

If we call maps 𝑓 : 𝐴′→ 𝐴 in a category A homomorphisms because they go between

objects of the same form, we could call elements 𝑝 : 𝐴 𝐵 — that is, 𝑝 ∈ 𝑃(𝐴, 𝐵)— as

heteromorphisms, maps going between objects of different forms.

We can’t necessarily compose these heteromorphisms, which we can see right away

from their signature: for 𝑝 : 𝐴 𝐵, there is always an object of A on the left and

an object of B on the right, so we’ll never be able to line two of them up. However,

if we have another profunctor 𝑄 : B C — another notion of heteromorphism —

then we can “compose” heteromorphisms 𝐴
𝑝
𝐵 in 𝑃 with 𝐵

𝑞
𝐶 in 𝑄 to get a

heteromorphism 𝐴
𝑝
𝐵

𝑞
𝐶 in a new profunctor 𝑃 ⊙ 𝑄 : A C.

Definition 3.4.3.2. The composite 𝑃 ⊙𝑄 of a profunctor 𝑃 : A B with a profunctor
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𝑄 : B C is defined to be the following quotient:

(𝑃 ⊙ 𝑄)(𝐴, 𝐶) :=

∑
𝐵∈B 𝑃(𝐴, 𝐵) ×𝑄(𝐵, 𝐶)
(𝑝 𝑓 , 𝑞) ∼ (𝑝, 𝑓 𝑞) (3.10)

We write an element [(𝑝, 𝑞)] ∈ (𝑃 ⊙ 𝑄)(𝐴, 𝐶) as 𝐴
𝑝
𝐵

𝑞
𝐶, so that the relation we

quotient by says that

𝐴
𝑝
𝐵

𝑓
−→ 𝐵′

𝑞
𝐶

has a unique interpretation as an element of 𝑃 ⊙ 𝑄.

The identity profunctor A : A A is the hom-functor sending 𝐴 and 𝐴′ to the

set A(𝐴, 𝐴′) of maps 𝐴→ 𝐴′.

We can see that composition of profunctors is associative (up to isomorphism)

because the objects of 𝑃 ⊙ (𝑄 ⊙ 𝑅) and (𝑃 ⊙ 𝑄) ⊙ 𝑅 can both be written as

𝐴
𝑝
𝐵

𝑞
𝐶

𝑟
𝐷.

The reason the hom profunctor A : A A is the identity profunctor is because the

elements of A ⊙ 𝑃 would be written as

𝐴′
𝑓
−→ 𝐴

𝑝
𝐵

but by the functoriality of 𝑃, this is already an element of 𝑃(𝐴′, 𝐵), which is to say more

precisely that every equivalence class [( 𝑓 , 𝑝)] ∈ (A ⊙ 𝑃)(𝐴′, 𝐵) is equally presented as

[(id𝐴′ , 𝑓 𝑝)].

Exercise 3.4.3.3. Let 𝑃 : A B be a profunctor.

1. Show that there is a natural transformation A ⊙ 𝑃 → 𝑃 given by the naturality

of 𝑃 on the left.

2. Show that there is a natural transformation 𝑃 ⊙ B→ 𝑃 given by the naturality of

𝑃 on the right.

3. Show that both of these natural transformations are isomorphisms.

♢

Example 3.4.3.4. A profunctor 1 A is the same thing as a functor A → Set, and a

profunctor A 1 is the same thing as a functor Aop → Set. Profunctors are therefore

intimately related with presheaves.

Now, we are ready to put functors and profunctors together into a double cate-

gory.
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Definition 3.4.3.5. The double category Cat of categories, profunctors, and functors

has

• Objects the categories.

• Horizontal category the category of categories and profunctors.

• Vertical category the category of categories and functors between them.

• A square

A B

𝛼

C D

𝑃

𝐹 𝐺

𝑄

Is a natural transformation 𝛼 : 𝑃 → 𝑄(𝐹, 𝐺), where 𝑄(𝐹, 𝐺) is the profunctor

Aop × B
𝐹op×𝐺−−−−−→ C × D

𝑄−→ Set. For 𝑝 : 𝐴 𝐵, we have 𝛼(𝑝) : 𝐹𝐴 𝐺𝐵, and

naturality says that 𝛼( 𝑓 𝑝𝑔) = (𝐹 𝑓 )𝛼(𝑝)(𝐺𝑔).
• Vertical composition of squares is given by composing the natural transforma-

tions.

• Given squares 𝛼 : 𝑃1 → 𝑄1(𝐹1 , 𝐹2) and 𝛽 : 𝑃2 → 𝑄2(𝐹2 , 𝐹3), we define their

horizontal composite 𝛼 | 𝛽 : 𝑃1 · 𝑃2 → (𝑄1 · 𝑄2)(𝐹1 , 𝐹3) by

(𝛼 | 𝛽)(𝐴1

𝑝1

𝐴2

𝑝2

𝐴3) = 𝐹1𝐴1

𝛼(𝑝1)
𝐹2𝐴2

𝛽(𝑝2)
𝐹3𝐴3

and checking that this descends correctly to the quotient.

Remark 3.4.3.6. We are using “Cat” to refer to the category of categories and functors

and to the double category of categories, profunctors, and functors. The one we mean

will be clear from context, and the category of categories and functors is the vertical

category of the double category of categories.

Remark 3.4.3.7. We omit full proofs of associativity and unitality for profunctor compo-

sition because they are best done with the coend calculus, and this would take us quite

far afield. See [Gra19] and [Lor21] for more about profunctors and double categories.

However, we will note that there is always a unique coherent isomorphism between

any two sequences of profunctors which would be equal if unity and associativity held

on the nose. We will do an example, since the general principle is always the same.

Consider 𝑃 : A B and 𝑄 : B C. We will give the canonical isomorphism

(A ⊙ 𝑃) ⊙ (𝑄 ⊙ C) ∼−→ 𝑃 ⊙ (B ⊙ (B ⊙ 𝑄)).
First, we begin with an isomorphism (A ⊙ 𝑃) ⊙ (𝑄 ⊙ C) ∼−→ 𝑃 ⊙ 𝑄 and then an

isomorphism 𝑃 ⊙ 𝑄 ∼−→ 𝑃 ⊙ (B ⊙ (B ⊙ 𝑄)). The first will be given by naturality,

composition and re-associating; the second by inserting appropriate identities and

re-associating.

An element of (A ⊙ 𝑃) ⊙ (𝑄 ⊙ C)(𝐴, 𝐶) is an equivalence class [(( 𝑓 , 𝑝), (𝑞, 𝑔))]. We

may therefore use the naturality of 𝑃 and𝑄 to give the class [( 𝑓 ·𝑝, 𝑞 ·𝑔)] ∈ (𝑃⊙𝑄)(𝐴, 𝐶).
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It is routine to check that this is indeed an isomorphism. It is hopefully clear how to

do this in general.

Now, we go the other way. An element of (𝑃⊙𝑄)(𝐴, 𝐶) is an equivalence class [(𝑝, 𝑞)].
We may then insert identities to give the class [(𝑝, (id, (id, 𝑞)))] ∈ 𝑃⊙(B⊙(B⊙𝑄))(𝐴, 𝐶).

A crucial point about canonical isomorphisms constructed in this manner is that

they compose: the composite of a canonical isomorphism is the canonical isomorphism

of that signature.

Exercise 3.4.3.8. Describe the canonical isomorphisms between the following com-

posites of profunctors. First, flatten them out by removing all hom profunctors using

naturality; then expand them again by inserting identities. Let 𝑃 : A B,𝑄 : B C,

and 𝑅 : C D.

1. (𝑃 ⊙ B) ⊙ (B ⊙ 𝑄) ∼−→A ⊙ ((𝑃 ⊙ B) ⊙ C).
2. 𝑃 ⊙ ((𝑄 ⊙ C) ⊙ (C ⊙ 𝑅)) ∼−→ ((𝑃 ⊙ 𝑄) ⊙ C) ⊙ (𝑅 ⊙ D).

♢

Remark 3.4.3.9. We will often need equalities between squares in the double category

Cat whose boundaries are not precisely equal, but which are canonically isomorphic.

The coming Lemma 3.4.3.11 is an example of this common scenario.

It would clutter already intricate proofs to keep track of the canonical isomorphisms

which are being introduced and cancelled at each step. For this reason, we’ll introduce

notation for “equal up to canonical isomorphism on the boundary”. We will write

𝛼
·

== 𝛽

to mean that although 𝛼 and 𝛽 have different boundaries, these boundaries are canon-

ically isomorphic and whenever they are made to be the same by any canonical iso-

morphism (pre- or post-composing 𝛼 and 𝛽 as necessary), the resulting squares will be

honestly equal. We will see our first example in Lemma 3.4.3.11.

Before we move on from the double category Cat, let’s record an important rela-

tionship between its squares (natural transformations between profunctors) and nat-

ural transformations between functors. We will show that natural transformations

are the same thing as squares in Cat whose top and bottom sides are hom profunc-

tors.
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Proposition 3.4.3.10. Let 𝐹 and 𝐺 : A → B be functors. Then there is a (natural)

bĳection

{Natural transformations 𝐹⇒ 𝐺} �


Squares

A A

𝛼

B B

𝐹 𝐺


given by sending the natural transformation 𝛼 : 𝐹 ⇒ 𝐺 to the transformation 𝛼̄ :

A(𝑋,𝑌) ⇒ B(𝐹𝑋, 𝐺𝑌) that sends any 𝑓 : 𝑋 → 𝑌 the diagonal 𝛼 𝑓 of the naturality

square:

𝐹𝑋 𝐺𝑋

𝐹𝑌 𝐺𝑌

𝛼𝑋

𝐹 𝑓
𝛼 𝑓

𝐺 𝑓

𝛼𝑌

Proof. First, let’s check that the transformation 𝛼̄( 𝑓 ) = 𝛼 𝑓 is natural. If 𝑥 : 𝑋′ → 𝑋

and 𝑦 : 𝑌 → 𝑌′, then we can form the following commutative diagram of naturality

squares:

𝐹𝑋′ 𝐺𝑋′

𝐹𝑋 𝐺𝑋

𝐹𝑌 𝐺𝑌

𝐹𝑌′ 𝐺𝑌′

𝛼𝑋′

𝐹𝑥 𝐺𝑥

𝛼𝑋

𝐹 𝑓
𝛼 𝑓

𝐺 𝑓

𝛼𝑌

𝐹𝑦 𝐺𝑦

𝛼𝑌′

The diagonal of the outer square is by definition 𝛼̄(𝑥 # 𝑓 # 𝑦), but we can see from the

commutativity of the diagram that it equals 𝐹𝑥 # 𝛼 𝑓 # 𝐺𝑦.

It remains to show that any natural transformation 𝛽 : A(𝑋,𝑌) ⇒ B(𝐹𝑋, 𝐺𝑌)
arises uniquely as 𝛼̄ for a natural transformation 𝛼 : 𝐹 ⇒ 𝐺. Given such a 𝛽, define

𝛼𝑋 := 𝛽(id𝑋). We need to prove the naturality of 𝛼 by showing that any solid square

𝐹𝑋 𝐺𝑋

𝐹𝑌 𝐺𝑌

𝛼𝑋

𝐹 𝑓
𝛽( 𝑓 )

𝐺 𝑓

𝛼𝑌

commutes. But note that if we put in the dashed 𝛽( 𝑓 ), we can see that both triangles

commute by the naturality of 𝛽( 𝑓 ):

𝛽( 𝑓 ) = 𝛽(id𝑋 # 𝑓 ) = 𝛽(id𝑋) # 𝐺 𝑓 = 𝛼𝑋 # 𝐺 𝑓 .

𝛽( 𝑓 ) = 𝛽( 𝑓 # id𝑌) = 𝐹 𝑓 # 𝛽(id𝑌) = 𝐹 𝑓 # 𝛼𝑌 .

This also shows that 𝛽( 𝑓 ) = 𝛼̄( 𝑓 ), which completes the proof. □
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There are two ways to compose natural transformations: vertically, and horizontally.

The above bĳection respects both of these compositions. In the following lemmas we

take the notation from Proposition 3.4.3.10.

Lemma 3.4.3.11. Let 𝛼 : 𝐹⇒ 𝐺 and 𝛽 : 𝐺⇒ 𝐻. Then

𝛼 # 𝛽 ·
== 𝛼̄ | 𝛽̄.

Proof. Here we are using the symbol “

·
==” from Remark 3.4.3.9 for the first time; this

is because the two sides do not have equal signature, only isomorphic signature. To

correctly compare them, we must conjugate by the appropriate isomorphisms. Here,

with signature included, is the actual equality we will prove:

A A A

�

A A

𝛼 # 𝛽

B B

𝐹 𝐻

=

A A A

𝛼̄ 𝛽̄

B B B

�

B B

𝐹 𝐺 𝐻

We leave the canonical isomorphisms without names. They can be described by the

process outlined in Remark 3.4.3.7. We note that both of these canonical isomorphisms

are given by composing two arrows, so in order to prove the equality above we will

show that given 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍,

(𝛼 # 𝛽) 𝑓 #𝑔 = 𝛼 𝑓 # 𝛽𝑔 .

We will do this by contemplating the following diagram:

𝐹𝑋 𝐺𝑋 𝐻𝑋

𝐹𝑌 𝐺𝑌 𝐻𝑌

𝐹𝑍 𝐺𝑍 𝐻𝑍

𝐹 𝑓

𝛼𝑋

𝛼 𝑓
𝐺 𝑓

𝛽𝑋

𝐻 𝑓

𝐹𝑔

𝛼𝑌

𝐺𝑔

𝛽𝑌

𝛽𝑔
𝐻𝑔

𝛼𝑍 𝛽𝑍

The naturality square for the composite 𝑓 # 𝑔 under the composite 𝛼 # 𝛽 is the outer

square, and therefore its diagonal (𝛼 # 𝛽) 𝑓 #𝑔 is the composite of the diagonals in the

diagram, which is 𝛼 𝑓 # 𝛽𝑔 . □
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Lemma 3.4.3.12. Let 𝐹1 , 𝐺1 : A → B and 𝐹2 , 𝐺2 : B→ C be functors, and let 𝛼 : 𝐹1 ⇒
𝐺1 and 𝛽 : 𝐹2 ⇒ 𝐺2 be natural transformations. We may define their composite 𝛼 ∗ 𝛽
by

(𝛼 ∗ 𝛽)𝑋 B 𝐹2𝛼𝑋 # 𝛽𝐺1𝑋 .

With this definition, we have

𝛼 ∗ 𝛽 =
𝛼̄

𝛽̄

Remark 3.4.3.13. Note that the equality claimed here is a bona-fide equality, and not an

“equality up to canonical isomorphism” (

·
==). This is because the two squares involved

have the exact same boundary, not merely a canonically isomorphic boundaries.

Proof. This time, we may prove the equality as stated. It comes down to showing that

(𝛼 ∗ 𝛽) 𝑓 = 𝛽𝛼 𝑓

for any 𝑓 : 𝑋 → 𝑌. Consider the following diagram:

𝐹2𝐹1𝑋 𝐹2𝐺1𝑋

𝐺2𝐹1𝑋 𝐺2𝐺1𝑋

𝐹2𝐹1𝑌 𝐹2𝐺1𝑌

𝐺2𝐹1𝑌 𝐺2𝐺1𝑌

𝐹2𝛼 𝑓

𝐹2𝛼𝑋 #𝛽𝐺
1
𝑋

𝛽𝐹
1
𝑋

𝐹2𝐹1 𝑓

𝐺2𝛼 𝑓

𝐹2𝛼𝑌#𝛽𝐺
1
𝑌

𝛽𝐺
1
𝑌

𝐺2𝐺1 𝑓

The back and front faces are the 𝛼 naturality square of 𝑓 pushed through 𝐹2 and 𝐺2

respectively. The 𝛽 naturality square of 𝛼 𝑓 is in the middle, colored in red. The 𝛼 ∗ 𝛽
naturality square of 𝑓 is in the middle, colored in blue. We note that the diagonal of

both these squares is the diagonal of the whole cube 𝐹2𝐹1𝑋 → 𝐺2𝐺1𝑌, which means

that they are equal. But this is what we were trying to show.

□

3.5 Theories of Dynamical Systems

In Section 2.6, we saw how from the data of an indexed category A : Cop → Cat we

could define a category of A-lenses via the Grothendieck construction:

LensA :=

∫ 𝐶:C

A(𝐶)op.

From this, we learned we could wire non-deterministic systems together because a

system could be expressed as a monadic lens of the form

(
updateS
exposeS

)
:

(
StateS
StateS

)
⇆

(
InS
OutS

)
.
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Now, the form

(
𝑆
𝑆

)
⇆

(
𝐼
𝑂

)
is not something that be expressed for a general A-lens

because in an A-lens

(
𝐴−

𝐴+

)
, 𝐴+ ∈ C while 𝐴− ∈ A(𝐶). In general, C and A(𝐶) might

have different objects. This suggests that we need a way to assign an object 𝑇𝐶 ∈ A(𝐶)
to each object of 𝐶, so that we can define a system, in general, to be an A-lens of the

form (
updateS

exposeS

)
:

(
𝑇StateS

StateS

)
⇆

(
InS

OutS

)
At this point, your categorical nose should be twitching. We’ve given a assignment on

objects; how is this assignment functorial? We can discover what sort of functoriality

we need from considering the expression in Proposition 3.4.1.5 of behaviors as squares

of arenas in the deterministic systems theory:

(
StateT

StateT

) (
StateS

StateS

)

(
InT

OutT

) (
InS

OutS

)

©­«
𝜙◦𝜋2

𝜙

ª®¬
©­«
updateT

exposeT

ª®¬ ©­«
updateS

exposeS

ª®¬
©­«
𝑓 ♯

𝑓

ª®¬
To express this square, we did not just use the fact that we could find StateS in both

the base C and in the category A(StateS) (recall that here, A = Ctx− : Cop → Cat).
We also used the fact that to any map 𝜙 : StateT → StateS we can build a chart(
𝜙◦𝜋2

𝜙

)
:

(
𝑆𝑡𝑎𝑡𝑒𝑇
StateT

)
→

(
StateS
StateS

)
. This is the sort of functoriality we need to define the

notion of behavior in general.

Definition 3.5.0.1. Let A : Cop → Cat be a strict indexed category. A section 𝑇 of A

consists of the following assignments:

• To every object 𝐶 ∈ C, an object 𝑇𝐶 ∈ A(𝐶).
• To every 𝜙 : 𝐶′→ 𝐶, a map 𝑇𝜙 : 𝑇𝐶′→ 𝜙∗𝑇𝐶.

These are required to satisfy the following laws:

• For any 𝐶 ∈ C, 𝑇id𝐶 = id𝑇𝐶 .

• For 𝜙 : 𝐶′→ 𝐶 and 𝜓 : 𝐶′′→ 𝐶′,

𝑇𝜓 # 𝜓∗(𝑇𝜙) = 𝑇(𝜓 # 𝜙).

We can express a section of an indexed category in terms of a functor into its

Grothendieck construction.
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Proposition 3.5.0.2. Let A : Cop → Cat be a strict indexed category. A section 𝑇 of

A is equivalently given by the data of a functor 𝑇̂ : C →
∫ 𝐶:C

A(𝐶) for which the

composite C
𝑇̂−→

∫ 𝐶:C
A(𝐶)

proj
−−−→ C with the projection is the identity on C.

Given a section 𝑇, we may more suggestively refer to 𝑇̂ by

(
𝑇(−)
(−)

)
.

Proof. Given a section 𝑇, we can form the functor

𝐶 ↦→
(
𝑇𝐶

𝐶

)
: C→

∫ 𝐶:C

A(𝐶)

sending 𝜙 to

(
𝑇𝜙
𝜙

)
. The laws of the section show that this is a functor.

On the other hand, given a 𝑇̂ : C→
∫ 𝐶:C

A(𝐶)whose composite with the projection

is the identity, we see that 𝑇̂(𝐶)must be of the form

(
𝑇𝐶
𝐶

)
and that 𝑇̂(𝜙)must be of the

form

(
𝑇𝜙
𝜙

)
, where 𝑇𝐶 and 𝑇𝜙 are defined to be the components of 𝑇̂ which live in the

categories A(𝐶). It is straightforward to check that functoriality implies the laws of a

section. □

We can see that the assignmen𝜙 ↦→ 𝜙◦𝜋2 is a section of Ctx− : Cop → Cat.

Proposition 3.5.0.3. Let C be a cartesian category. Then the assigment 𝐶 ↦→ 𝐶 and

𝜙 ↦→ 𝜙 ◦ 𝜋2 gives a section of Ctx− : Cop → Cat.

Proof. We check that the two laws are satisfied.

1. id ◦ 𝜋2 = 𝜋2, which is the identity in Ctx𝐶 .

2. We may calculate:

(𝜓 ◦ 𝜋2) # 𝜓∗(𝜙 ◦ 𝜋2)(𝑐, 𝑥) = 𝜓∗(𝜙 ◦ 𝜋2)(𝑐,𝜓(𝑥))
= 𝜙 ◦ 𝜋2(𝜓(𝑐),𝜓(𝑥))
= 𝜙(𝜓(𝑥))
= (𝜓 # 𝜙) ◦ 𝜋2(𝑐, 𝑥)

□

In order to define lenses, we need the data of an indexed category A : Cop → Cat.
In order to define dynamical systems as A-lenses, and to define the behaviors between

them, we need the data of a section 𝑇 of A. Putting these two bits of data together, we

get the notion of dynamical system systems theory.

Definition 3.5.0.4. A theory of dynamical systems consists of an indexed category A :

Cop → Cat together with a section 𝑇.
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Having this definition of systems theory in mind, we can now define the notion of

dynamical system and behavior in complete generality.

Definition 3.5.0.5. A dynamical system in a theory of dynamical systems D = (A , 𝑇)
is an A-lens of the form (

updateS

exposeS

)
:

(
𝑇StateS

StateS

)
⇆

(
InS

OutS

)
.

Explcitly, this consists of:

• An object StateS ∈ C of states.
• An object OutS ∈ C of possible outputs.
• An object InS ∈ A(OutS) of possible inputs or parameters. What parameters are

sensible may therefore depend on the output (in the sense of being an object of a

category which depends for its definition on OutS).

• A map exposeS : StateS → OutS which exposes the output of a given state.

• A map updateS : expose
∗
S
InS → 𝑇StateS which assigns to any parameter valid for

the output of a given state to a possible change in state.

In order to define the notion of behavior, we will need to generalize the double

category of arenas from the deterministic systems theory to an arbitrary systems theory.

To do this, we will define the Grothendieck double construction, which produces a double

category of arenas from an indexed category A.

Definition 3.5.0.6. Let A : Cop → Cat be an indexed category. The Grothendieck double
construction

⊏⊐
∬ 𝐶∈C

A(𝐶)

is the double category defined by:

• Its objects are the pairs

(
𝐴
𝐶

)
of an object 𝐶 ∈ C and an object 𝐴 ∈ A(𝐶).

• Its horizontal category is the Grothendieck construction

∫ 𝐶∈C
A(𝐶) of A.

• Its vertical category is the Grothendieck construction

∫ 𝐶∈C
A(𝐶)op

of the opposite

of A.
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• There is a square of the following form:

(
𝐴1

𝐶1

) (
𝐴2

𝐶2

)

(
𝐴3

𝐶3

) (
𝐴4

𝐶4

)

©­«
𝑔

1♭

𝑔1

ª®¬
©­«
𝑓
♯
1

𝑓1

ª®¬ ©­«
𝑓
♯
2

𝑓2

ª®¬
©­«
𝑔

2♭

𝑔2

ª®¬

(3.11)

if and only if the following diagrams commute:

𝐶1 𝐶2 𝑓 ∗
1
𝐴3 𝐴1

𝐶3 𝐶4 𝑓 ∗
1
𝑔∗

2
𝐴4 𝑔∗

1
𝑓 ∗
2
𝐴4 𝑔∗

1
𝐴2

𝑔1

𝑓1 𝑓2

𝑓
♯
1

𝑓 ∗
1
𝑔

2♭ 𝑔
1♭

𝑔2 𝑔∗
1
𝑓
♯
2

(3.12)

We will call the squares in the Grothendieck double construction commuting
squares, since they represent the proposition that the “lower” and “upper” squares

appearing in their boundary commute.

• Composition of arrows in both directions is given as in the appropriate Grothendieck

constructions.

It just remains to show that commuting squares compose. The lower squares com-

pose because they are ordinary squares. It just remains to show that the upper squares

commute.

• For vertical composition we appeal to the following diagram:

𝑓 ∗
1
𝑓 ∗
3
𝐴5 𝑓 ∗

1
𝐴3 𝐴1

𝑓 ∗
1
𝑓 ∗
3
𝑔∗

3
𝐴6 𝑓 ∗

1
𝑔∗

2
𝑓 ∗
4
𝐴6 𝑓 ∗

1
𝑔∗

2
𝐴4

𝑔∗
1
𝑓 ∗
2
𝑓 ∗
4
𝐴6 𝑔∗

1
𝑓 ∗
2
𝐴4 𝑔∗

1
𝐴2

𝑓 ∗
1
𝑓
♯
3

𝑓 ∗
1
𝑓 ∗
3
𝑔

3♭

𝑓
♯
1

𝑓 ∗
1
𝑔

2♭

𝑔
1♭

𝑓 ∗
1
𝑔∗

2
𝑓
♯
4

𝑔∗
1
𝑓 ∗
2
𝑓
♯
4

𝑔∗
1
𝑓
♯
2

The outer diagram is the “upper” square of the composite, while the “upper”

squares of each factor appear in the top left and right respectively.
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• For horizontal composition we appeal to the following diagram:

𝑓 ∗
1
𝐴3 𝐴1

𝑓 ∗
1
𝑔∗

2
𝐴4 𝑔∗

1
𝑓 ∗
2
𝐴4 𝑔∗

1
𝐴2

𝑔∗
1
𝑓 ∗
2
𝑔∗

4
𝐴6

𝑓 ∗
1
𝑔∗

2
𝑔∗

4
𝐴6 𝑔∗

1
𝑔∗

3
𝑓 ∗
3

𝑔∗
1
𝑔∗

3

𝑓
♯
1

𝑓 ∗
1
𝑔

2♭ 𝑔
1♭

𝑓 ∗
1
𝑔∗

2
𝑔

4♭

𝑔∗
1
𝑓
♯
2

𝑔∗
1
𝑓 ∗
2
𝑔

4♭

𝑔∗
1
𝑔

3♭

𝑔∗
1
𝑔∗

3
𝑓
♯
3

We can now check that this does indeed abstract the double category of arenas.

Proposition 3.5.0.7. The double category of arenas in the deterministic systems theory

is the Grothendieck double construction of the indexed category of sets and functions

in context Ctx− : Setop → Cat:

Arena = ⊏⊐
∬ 𝐶∈Set

Ctx𝐶 .

Proof. By Propositions 2.6.2.5 and 3.3.0.15, the horizontal and vertical categories are

the same. It remains to show that the diagrams of Eq. (3.11) mean the same things as

Eq. (3.6).

Consider a square of the form

(
𝐴−

𝐴+

) (
𝐵−

𝐵+

)

(
𝐶−

𝐶+

) (
𝐷−

𝐷+

)

©­«
𝑓♭

𝑓

ª®¬
©­«
𝑗♯

𝑗

ª®¬ ©­«
𝑘♯

𝑘

ª®¬
©­«
𝑔♯

𝑔

ª®¬
The first diagram and first equation say:

𝐴+ 𝐵+

𝐶+ 𝐷+

𝑗

𝑓

𝑘

𝑔

𝑔(𝑗(𝑎+)) = 𝑘( 𝑓 (𝑎+)) for all 𝑎+ ∈ 𝐴+,
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which mean the same thing. The second diagram, which takes place in Ctx𝐴+ , is more

interesting. Here’s that diagram with the names we’re currently using:

𝑗∗𝐶− 𝐴−

𝑗∗𝑔∗𝐷− 𝑓 ∗𝑘∗𝐷− 𝑓 ∗𝐵−

𝑗♯

𝑗∗𝑔♭ 𝑓♭

𝑓 ∗𝑘♯

Let’s compute the two paths from the top left to the bottom right. First is 𝑓♭◦ 𝑗♯ : 𝑗∗𝐶− →
𝑓 ∗𝐵−, which sends (𝑎+ , 𝑐−) to 𝑓♭(𝑎+ , 𝑗♯(𝑎+ , 𝑐−)). This is the right hand side of the second

equation, so we’re on the right track. The other path is 𝑓 ∗𝑘♯ ◦ 𝑗∗𝑔♭. Recall that 𝑗∗𝑔♭ sends

(𝑎+ , 𝑐−) to 𝑔♭(𝑗(𝑎+), 𝑐−), and similarly 𝑓 ∗𝑘♯ sends (𝑎+ , 𝑑−) to 𝑘♯( 𝑓 (𝑎+), 𝑑−). Putting them

together, we send (𝑎+ , 𝑐−) to 𝑘♯( 𝑓 (𝑎+), 𝑔♭(𝑗(𝑎+), 𝑐−)). Therefore the commutation of this

diagram means the same thing as the second equation in the definition of a square of

arenas. □

Building off of this proposition, we can think of the Grothendieck double construc-

tion as giving us a double category of arenas out of any indexed category.

Definition 3.5.0.8. Let A : Cop → Cat be an indexed category. Then the category of

A-arenas is defined to be the Grothendieck double construction of A:

ArenaA := ⊏⊐
∬ 𝐶∈C

A(𝐶).

The horizontal category of ArenaA is the category ChartA of A-charts, and the

vertical category of ArenaA is the category LensA of A-lenses.

With this definition of the double category of arenas in hand, we can define a

behavior in a general systems theory.

Definition 3.5.0.9. LetD = (A , 𝑇) be a systems theory, and T and S two systems in this

systems theory. Given an A-chart(
𝑓♭

𝑓

)
:

(
InT

OutT

)
⇒

(
InS

OutS

)
,

A

(
𝑓♭
𝑓

)
-behavior 𝜙 : T→ S is a map 𝜙 : StateT → StateS so that the following is a square
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in the double category ArenaA of A-arenas:

(
𝑇StateT

StateT

) (
𝑇StateS

StateS

)

(
InT

OutT

) (
InS

OutS

)

©­«
𝑇𝜙

𝜙

ª®¬
©­«
updateT

exposeT

ª®¬ ©­«
updateS

exposeS

ª®¬
©­«
𝑓♭

𝑓

ª®¬
We will often refer to this square by 𝜙 as well.

In Section 4.2, we will see what composition in the double category ArenaA of

A-arenas let’s us conclude about composition of systems and behaviors. For now, in

the rest of this section, we will formally introduce the theories of dynamical systems

we have been working with throughout the book, with some precise variations we can

now make clear.

But before we do that, let’s see how the above rather terse formal definition captures

the intuitive and informal definition given in Informal Definition 1.1.0.2:

Informal Definition 3.5.0.10. A theory of dynamical systems is a particular way to

answer the following questions about what it means to be a dynamical system:

1. What does it mean to be a state?

2. How should the output vary with the state — discretely, continuously, linearly?

3. Can the kinds of input a system takes in depend on what it’s putting out, and

how do they depend on it?

4. What sorts of changes are possible in a given state?

5. What does it mean for states to change.

6. How should the way the state changes vary with the input?

Let’s see how choosing an indexed category A : Cop → Cat and a section 𝑇 consti-

tutes a series of answers to each of these questions.

1. We had to choose the base category C. Our space of states will be an object of

this category, and so choosing the objects of this category means choosing what

it means to be a state.

2. Our exposed variable exposeS : StateS → OutS will be a morphism of C, so

choosing the morphisms of C will mean choosing how the output will vary with

the state.

3. The input InS will be an object of A(OutS), and therefore defining the objects

of A(OutS)— in particular, how they depend on OutS — will determine how a

system’s space of inputs may depend on its outputs.



3.5. THEORIES OF DYNAMICAL SYSTEMS 147

4. The our update map updateS : expose
∗
S
𝐼 → 𝑇StateS has codomain 𝑇StateS.

Therefore, choosing object assignment of the section 𝑇 tells us space of possible

changes which the system may make (as depending on the state it is in, in the

sense that 𝑇StateS lives in a category A(StateS) which depends for its definition

on StateS).

5. Since a behavior will involve the chart

(
𝑇𝜙
𝜙

)
:

(
𝑇StateT
StateT

)
⇒

(
𝑇StateS
StateS

)
, choosing

the action of 𝑇 on maps 𝜙 will tell us what it means to interpret changes of state

that arise from the dynamics of the system into whole behaviors of the system.

We will see an elaboriation of this idea when we discuss behaviors in systems

theories other than the deterministic systems theory.

6. By choosing the maps of A, we will determine what sort of map updateS is. This

will determine in what sort of way the changes in state vary with parameters.

3.5.1 The deterministic systems theories

We have been speaking of the deterministic systems theory throughout this book to

mean the theory of machines with discrete time whose next state is entirely deter-

mined by its current state and choice of parameters. But really, there have been many

deterministic systems theories, one for each cartesian category C.

Definition 3.5.1.1. Let C be a cartesian category. The deterministic systems theory DetC

in C is defined to be the indexed category Ctx− : Cop → Cat together with the section

𝐶 ↦→ 𝐶 and 𝜙 ↦→ 𝜙 ◦ 𝜋2 defined in Proposition 3.5.0.3.

Remark 3.5.1.2. Proposition 3.4.1.5 Shows that behaviors in a deterministic systems

theory are precisely what we studied (and saw examples of) in Section 3.3.

There are many different deterministic systems theory, one for each choice of carte-

sian category C. For example:

• If C = Set is the category of sets, we have discontinuous, discrete-time, determin-

isitic systems. These are often called “Moore machines”.

• If C = Top is the category of topological spaces, we have continuous, discrete-

time, deterministic systems.

• If C = Man is the category of smooth manifolds, then we have smooth, discrete-

time, deterministic systems.

• If C = Meas is the category of measurable spaces and measurable maps, then we

have discrete-time, deterministic systems whose update is measurable.

• And so on...

Let’s see how to interpret the determistic systems theory in the case that C = Set
answers the questions of Informal Definition 1.1.0.2.

1. A state is an element of a set.

2. The output varies as a function of the state, with constraints on what sort of

function.
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3. No, the kinds of inputs do not depend on the state — they live in a set which

does not depend on the current exposed variable.

4. From a state, one may transition to any other state (since 𝑇StateS = StateS).

5. We treat the changes and the states in the same way, interpreting a change as the

next state.

6. The change in state is a function of the previous state and the input.

Exercise 3.5.1.3. Answer the questions of Informal Definition 1.1.0.2 in for the following

systems theories:

1. DetTop.

2. DetMan.

3. DetArity.

♢

3.5.2 The differential systems theories

We can now define the differential systems theories, which will finally let us see the

definitions of differential behavior given in Section 3.2 as different incarnations of a

single, general definition.

Unlike the case with deterministic systems theories, we will not be giving a single,

general definition of “differential” systems theory. We will be defining our different

differential systems theory ad-hoc.4

We begin with the differential systems theory used to define the notion of differential

system in Definition 1.2.2.1.

Definition 3.5.2.1. The Euclidean differential systems theoryEuc is defined by the indexed

category Ctx− : Eucop → Cat together with the section 𝑇 given by

• 𝑇R𝑛 := R𝑛 , thinking of R𝑛 as tangent space of a point in R𝑛 .

• For a differentiable map 𝑓 : R𝑛 → R𝑚 , we define 𝑇 𝑓 : R𝑛 × R𝑛 → R𝑚 to be

𝑇 𝑓 (𝑝, 𝑣) B 𝐷 𝑓𝑝𝑣

where 𝐷 𝑓𝑝 is the matrix of partial derivatives

(
𝜕 𝑓𝑖
𝜕𝑥 𝑗

���
𝑥=𝑝

)
. In other words, 𝑇 𝑓 (𝑝, 𝑣)

is the directional derivative in direction 𝑣 of 𝑓 at 𝑝. The functoriality law for the

section is precisely the multivariable chain law.

Exercise 3.5.2.2. Check that 𝑇 as defined is indeed a section by referring to the multi-

dimensional chain law. ♢

4
One can give a general definition of differential systems theory that specializes to these various

notions with the notion of tangent category with display maps (see e.g. [CC17]). But we prefer to just

describe the various categories as they come.
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Remark 3.5.2.3. Note that if 𝑓 : R→ R𝑛 is a function, then

𝑇 𝑓 (𝑡 , 𝑣) = 𝑑𝑓

𝑑𝑡
(𝑡) · 𝑣.

The Euclidean differential systems theory Euc answers the questions of Informal

Definition 1.1.0.2 in the following way:

1. A state is a 𝑛-tuple of real numbers, which is to say a point in R𝑛 .

2. The output is a differentiable function of the state.

3. The kind of input does not depend on the output.

4. A possible change in a state is given by a displacement vector, also in R𝑛 .

5. For a state to change means that it is tending in this direction. That is, it has a

given derivative.

6. The changes in state vary differentiably with the input.

Let’s see what behaviors look like in the Euclidean differential systems theory. Note

that since the indexed category of Euc is Ctx− : Eucop → Cat, its double category

of arenas is the same as for the deterministic systems theory DetEuc. However, the

definition of behavior will be different because the section is different. Let’s work out

what a general behavior is in Euc explicitly.

Proposition 3.5.2.4. LetT andSbe systems in the Euclidean differential systems theory.

A chart

(
𝑓♭
𝑓

)
:

(
InT
OutT

)
⇒

(
InS
OutS

)
consists of a pair of smooth functions 𝑓 : OutT →

OutS and 𝑓♭ : OutT × InT → InS.

A

(
𝑓♭
𝑓

)
-behavior is a smooth function 𝜙 : StateT → StateS such that

exposeS(𝜙(𝑡)) = 𝑓 (exposeT(𝑡)).
updateS(𝜙(𝑡), 𝑓♭(exposeT(𝑡), 𝑗)) = 𝐷𝜙𝑡updateT(𝑡 , 𝑗)

Proof. This is a matter of interpreting the square

(
𝑇StateT

StateT

) (
𝑇StateS

StateS

)

(
InT

OutT

) (
InS

OutS

)

©­«
𝑇𝜙

𝜙

ª®¬
©­«
updateT

exposeT

ª®¬ ©­«
updateS

exposeS

ª®¬
©­«
𝑓♭

𝑓

ª®¬
using by specializing Eq. (3.6) to the above case, using the definition of 𝑇𝜙 in Euc. □
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Example 3.5.2.5. Consider the following system Time in Euc:

• StateTime = R = OutTime, and exposeTime = id.

• InTime = R0
, and

updateTime(𝑠, ∗) B 1.

This system represents the simple differential equation

𝑑𝑠

𝑑𝑡
= 1.

Let S be another system in Euc. A chart

(
𝑝
𝑣

)
:

(
R0

R

)
⇒

(
InS
OutS

)
consists of a function

𝑣 : R → OutS and a function 𝑝 : R × R0 → InS, which is to say 𝑝 : R → InS. This is

precisely the sort of chart we need for a trajectory.

A

(
𝑝
𝑣

)
-behavior 𝜙 : Time → S consists of a differentiable function 𝜙 : R → StateS

such that the following is a square in the double category of arenas:

(
R

R

) (
𝑇StateS

StateS

)

(
∗
R

) (
InS

OutS

)

©­«
𝑇𝜙

𝜙

ª®¬
©­«

1

id

ª®¬ ©­«
updateS

exposeS

ª®¬
©­«
𝑝

𝑣

ª®¬
For this to be a square means that the following two equations hold:

exposeS(𝜙(𝑡)) = 𝑣(𝑡)

updateS(𝜙(𝑡), 𝑝(𝑡)) =
𝑑𝜙

𝑑𝑡
(𝑡).

That is, a behavior of this sort is precisely a trajectory as defined in Definition 3.2.1.6

Example 3.5.2.6. Consider the following simple system Fix:

• StateFix = R0 = OutFix and exposeFix = id.

• InFix = R0
and updateFix(∗, ∗) = ∗.

This system has no state variables. Nevertheless, a chart

(
𝑖
𝑜

)
:

(
InFix
OutFix

)
⇒

(
InS
OutS

)
into

some other system S is not trivial; it is a pair of elements 𝑖 ∈ InS and 𝑜 ∈ OutS.

A

(
𝑖
𝑜

)
-behavior 𝑠 : Fix → S consists of a differentiable function 𝑠 : R0 → StateS —

which is to say a state 𝑠 ∈ StateS – such that the following is a square in the double
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category of arenas:

(
R0

R0

) (
𝑇StateS

StateS

)

(
∗
R

) (
InS

OutS

)

©­«
𝑇𝑠

𝑠

ª®¬
©­«

0

id

ª®¬ ©­«
updateS

exposeS

ª®¬
©­«
𝑝

𝑣

ª®¬
Now, 𝑠 : R0 → StateS is a constant function, so 𝑇(𝑠, ∗) = 0. Therefore, for this to be a

square means that the following two equations hold:

exposeS(𝑠) = 𝑜.

updateS(𝑠, 𝑖) = 0.

This says that S is not changing in state 𝑠 on input 𝑖, or that 𝑠 is a steady state of S for

input 𝑖 as in Definition 3.2.2.7.

The Euclidean differential systems theory Euc is a special case of a cartesian differ-
ential systems theory. The category Euc is a cartesian differential category, and for any

cartesian differential category we can make a cartesian differential systems theory. We

won’t define the notion of cartesian differential category here, as the definition is a bit

involved. See [BCS09] for a comprehensive introduction.

Definition 3.5.2.7. For any cartesian differential category C with differential operator

𝑇, we have a systems theoryCartDiffC,𝑇 defined by the indexed category Ctx− : Cop →
Cat together with the section given by 𝑇.

Now, we would like to also show that periodic orbits are behaviors in a differential

systems theory, but we’re a bit stuck. In the Euclidean systems theory, there’s no way

to ensure that a trajectory 𝜙 : R→ R𝑛 is periodic. Recall that 𝜙 being periodic means

that

𝜙(𝑡) = 𝜙(𝑡 + 𝑘)

for some 𝑘 ∈ R called the period. If 𝜙 is periodic, then it descends to the quotientR/𝑘Z,

which is a circle of radius
𝑘

2𝜋 . If we could define StateOrbitk to be R/𝑘Z, then a trajectory

𝜙̂ : StateOrbitk → StateS would be precisely a periodic trajectory 𝜙 : R → StateS.

To make this expansion of representable behaviors, we will need to move beyond

Euclidean spaces.

Our first guess might be to simply change out the category Euc of Euclidean spaces

for the category Man of smooth manifolds in the definition of Euc. Certainly, Man is

a cartesian category and so Ctx : Manop → Cat is a perfectly good indexed category.
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But the tangent bundle of a general smooth manifold is not necessarily a product like

it is for R𝑛 . So we would need to change our indexed category as well!

Now, strictly speaking we don’t have to do this if we only want to add circles, because

circles have a trivial tangent bundle. But it will turn out that defining the section 𝑇 will

involve choosing, once and for all, a particular trivialization of the tangent bundle of

the circle and expressing all derivatives in terms of this. It will end up much easier to

simply jump over to general manifolds in a single leap.

We recall that to any manifold𝑀 there is an associated tangent bundle𝜋 : 𝑇𝑀 → 𝑀.

A vector field on a manifold 𝑀 is a section 𝑣 : 𝑀 → 𝑇𝑀 of the tangent bundle. We

recall a bit about tangent bundles now.

Proposition 3.5.2.8. The assignment of a manifold 𝑀 to its tangent space 𝑇𝑀 is func-

torial in that it extends to an assignment

𝑓 : 𝑀 → 𝑁 ↦→ 𝑇 𝑓 : 𝑇𝑀 → 𝑇𝑁

which, on Euclidean spaces gives 𝑇 𝑓 (𝑝, 𝑣) = 𝐷 𝑓𝑝𝑣. Furthermore, the tangent bundle

𝜋 : 𝑇𝑀 → 𝑀 is natural in the the diagram

𝑇𝑀 𝑇𝑁

𝑀 𝑁

𝜋

𝑇 𝑓

𝜋

𝑓

commutes.

There is something special about the tangent bundle which allows it to be re-indexed

to a different manifold: it is a submersion. Not all pullbacks of manifolds exist, but all

pullbacks of submersions exist and are submersions.

Definition 3.5.2.9. A submsersion 𝜙 : 𝑀 → 𝑁 is a map of manifolds for which 𝑇𝑝𝜙 :

𝑇𝑝𝑀 → 𝑇𝜙(𝑝)𝑁 is surjective for each 𝑝 ∈ 𝑀.

We note that every diffeomorphism is a submersion, and that the composite of

submersions is a submersion.

Lemma 3.5.2.10. Let 𝜙 : 𝐴 → 𝐵 be a submersion. Then for any 𝑓 : 𝐶 → 𝐵, the set

theoretic pullback 𝐴 ×𝐵 𝐶 = {(𝑎, 𝑐) ∈ 𝐴 × 𝐶 | 𝜙(𝑎) = 𝑓 (𝑐)} may be given the structure

of a smooth manifold so that the two projections 𝐴 ×𝐵 𝐶 → 𝐴 and 𝐴 ×𝐵 𝐶 → 𝐶

are smooth, and so that the resulting square is a pullback square in the category of

manifolds. Furthermore, the projection 𝑓 ∗𝜙 : 𝐴 ×𝐵 𝐶 → 𝐶 is also a submersion.

In short, we say that pullbacks of submersions exist and are themselves submersions.

This situation arises enough that we can give an abstract definition of it.
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Definition 3.5.2.11. Let C be a category. A class of display maps in C is a class of maps

D which satisfies the following:

• Every isomorphism is in D.

• D is closed under composition. If 𝑓 and 𝑔 are composable arrows in D, then 𝑓 # 𝑔
is in D.

• D is closed under pullback. If 𝑓 : 𝐴→ 𝐵 is in D and 𝑔 : 𝐶 → 𝐵 is any map, then

the pullback 𝑔∗ 𝑓 : 𝐴 ×𝐵 𝐶 → 𝐶 exists and is in D.

A category with display maps (C,D) is a category C equipped with a class D of display

maps.

We have seen that (Man, Subm) is a category with display maps by Lemma 3.5.2.10.

There are two other common classes of display map categories.

• If C has all pullbacks, then we may take all maps to be display maps.

• If C is cartesian, then we may take the product projections to be the display maps.

The first of these obviously works, but the second requires a bit of proof (and to be a

bit more carefully defined).

Proposition 3.5.2.12. Let C be a cartesian category. Let D denote the class of maps

𝑓 : 𝐴 → 𝐵 for which there exists a 𝐶 ∈ C and an isomorphism 𝑖 : 𝐴 → 𝐶 × 𝐵 for

which 𝑓 = 𝑖 #𝜋2. That is, D is the class of maps which are product projections up to an

isomorphism. Then (C,D) is a display map category.

Proof. We verify the conditions

• If 𝑖 : 𝐴→ 𝐵 is an isomorphism, then 𝑓 # 𝜋−1

2
: 𝐴→ 1 × 𝐵 is also an isomorphism.

By construction, 𝑓 = 𝑓 # 𝜋−1

2

# 𝜋2, so every isomorphism is a product projection

up to isomorphism.

• Suppose that 𝑓 : 𝐴→ 𝐵 is isomorphic to a product projection 𝜋2 : 𝐶 × 𝐵→ 𝐵 in

that 𝑓 = 𝑖 #𝜋2, and 𝑔 : 𝐵→ 𝑋 is isomorphic to a product projection𝜋2 : 𝑌×𝑋 → 𝑋

in that 𝑔 = 𝑗 # 𝜋2. We may then see that 𝑓 # 𝑔 is a product projection up to

isomorphism by contemplating the following commutative diagram:

𝐴 𝐶 × 𝐵 𝐶 × (𝑌 × 𝑋) (𝐶 × 𝑌) × 𝑋

𝐵 𝑌 × 𝑋

𝑋

𝑓

𝑖

𝜋2

𝐶×𝑗 𝛼

𝜋2

𝜋2

𝑔

𝑗

𝜋2

• Let 𝑓 : 𝐴 → 𝐵 be a equal to 𝑖 # 𝜋2 with 𝑖 : 𝐴 → 𝐶 × 𝐵 an isomorphism. Let

𝑘 : 𝑋 → 𝐵 be any other map. We will show that 𝜋2 : 𝐶 ×𝑋 → 𝑋 fits in a pullback
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diagram as follows:

𝑍

𝐶 × 𝑋 𝐶 × 𝐵 𝐴

𝑋 𝐵

𝑥

𝑎

(𝑎#𝑖#𝜋1 ,𝑥)

𝐶×𝑘

𝜋2

𝑖−1

𝑓

𝑘

The square commutes since 𝑖−1 # 𝑓 = 𝜋2 : 𝐶 × 𝐵 → 𝐵. We see that it satisfies

the universal property by making the definition of the dashed arrow given in

the diagram. The lower triangle commutes by definition, so consider the upper

triangle, seeking to show that 𝑎 = (𝑎 # 𝑖 # 𝜋1 , 𝑥) # (𝐶 × 𝑘) # 𝑖−1
. We calculate:

(𝑎 # 𝑖 # 𝜋1 , 𝑥) # (𝐶 × 𝑘) # 𝑖−1 = (𝑎 # 𝑖 # 𝜋1 , 𝑥 # 𝑘) # 𝑖−1

= (𝑎 # 𝑖 # 𝜋1 , 𝑎 # 𝑓 ) # 𝑖−1

= (𝑎 # 𝑖 # 𝜋1 , 𝑎 # 𝑖 # 𝜋2) # 𝑖−1

= 𝑎 # 𝑖 # 𝑖−1

= 𝑎.

Now, if 𝑧 : 𝑍 → 𝐶 were any other map so that (𝑧, 𝑥) # 𝐶 × 𝑘 # 𝑖−1 = 𝑎, we would have

(𝑧, 𝑎 # 𝑖 #𝜋2) # 𝑖−1 = 𝑎, or (𝑧, 𝑎 # 𝑖 # 𝑝𝑖2) = 𝑎 # 𝑖, from which we may deduce that 𝑧 = 𝑎 # 𝑖 #𝜋1.

This proves uniqueness of the dashed map. □

We can now construct the indexed category that will form the basis of our new

differential systems theory. We will do so at the general level of display map categories,

since the construction relies only on this structure.

Definition 3.5.2.13. Let (C,D) be a category with display maps. The indexed category

D : Cop → Cat is defined as follows:

• To each object 𝐶 ∈ C, D(𝑀) is the category with objects the display maps 𝜙 : 𝐸→
𝐶 and maps 𝑓 : 𝐸 → 𝐸′ such that 𝑓 # 𝜙′ = 𝜙. That is, it is the full subcategory of

the slice category over 𝐶 spanned by the display maps.

• To each map 𝑓 : 𝐶′ → 𝐶, we associate the functor 𝑓 ∗ : D(𝑁) → D(𝑀) given by

taking the pullback along 𝑓 .

We note that this is functorial up to coherent isomorphism by the uniqueness (up to

unique isomorphism) of the pullback.

Exercise 3.5.2.14. Let C be a cartesian category, and equip it with the class D of maps

which are isomorphic to product projections, as in Proposition 3.5.2.12. Prove that
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D : Cop → Cat is equivalent, as an indexed category, to Ctx− : Cop → Cat. ♢

Exercise 3.5.2.15. Let C be a category with all pullbacks and let D = C be the class of

all maps. Show Show that D : Cop → Cat is the self-indexing of C. It sends an object

𝐶 ∈ C to the slice category C ↓ 𝐶 whose objects are maps 𝑥 : 𝑋 → 𝐶 and whose maps

𝑓 : 𝑥 → 𝑦 are maps 𝑓 : 𝑋 → 𝑌 with 𝑓 # 𝑦 = 𝑥. ♢

We can specialize this to the category of smooth manifolds with submersions the

display maps

Definition 3.5.2.16. The indexed category Subm : Manop → Cat is defined as follows:

• To each manifold 𝑀, Subm(𝑀) is the category of submersions 𝜙 : 𝐸 → 𝑀 and

maps 𝑓 : 𝐸→ 𝐸′ such that 𝑓 # 𝜙′ = 𝜙.

• To each map 𝑓 : 𝑀 → 𝑁 , we associate the functor 𝑓 ∗ : Subm(𝑁) → Subm(𝑀)
given by taking the pullback along 𝑓 .

If (C,D) is a category with display maps, then the category of charts of D : Cop →
Cat is easy to understand in terms of D.

Proposition 3.5.2.17. Let (C,D) be a category with display maps. Then the category

ChartD =
∫ 𝐶∈C

D(𝐶) of charts for D : Cop → Cat is equivalent to the category whose

objects are display maps and whose morphisms are commutative squares between

them.

Proof. An object

(
𝑎−

𝐴+

)
of the category of charts is a pair consisting of an object 𝐴+ ∈ C

and a display map 𝑎− : 𝐴− → 𝐴+ in D(𝐴+). But 𝐴+ is determined, as the codomain, by

𝑎−; so the objects of the category of charts are in bĳection with the display maps. We

then show that the charts are similarly in bĳection with the squares between display

maps.

A chart

(
𝑓♭
𝑓

)
:

(
𝑎−

𝐴+

)
⇒

(
𝑏−

𝐵+

)
for this indexed category is a pair consisting of a map

𝑓 : 𝐴+ → 𝐵+ in C and a triangle

𝐴− 𝑓 ∗𝐵−

𝐴+
𝑎−

𝑓♭

𝑓 ∗𝑏−

By the universal property of the pullback, this data is equivalently given by the data of

a square

𝐴− 𝐵−

𝐴+ 𝐵+

𝑎−

𝑓♭

𝑏−

𝑓
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Now, consider a composite square

𝐴− 𝐵− 𝐶−

𝐴+ 𝐵+ 𝐶+

𝑎−

𝑓♭

𝑏−

𝑔♭

𝑐−

𝑓 𝑔

We can see that the arrow 𝑓♭ # 𝑓 ∗𝑔♭ : 𝐴− → 𝑓 ∗𝑔∗𝐵− composes with the projections from

the pullbacks to give the top half of the outer square, and therefore it is the unique

map into the pullback induced by the outer square. □

Corollary 3.5.2.18. Let (C,D) be a category with display maps. To give a section of

D : Cop → Cat, it suffices to give an endofunctor 𝑇 : C → C together with a natural

transformation 𝜋 : 𝑇 → idC whose components are all display maps.

Proof. Such an endofunctor 𝑇 with natural transformation 𝜋 gives us a functor 𝐶 ↦→
𝜋 : 𝑇𝐶 → 𝐶 going from C to the category of display maps in C and squares between

them. This functor will assign to each 𝑓 : 𝐶′→ 𝐶 the naturality square

𝑇𝐶′ 𝑇𝐶

𝐶′ 𝐶

𝜋

𝑇 𝑓

𝜋

𝑓

We note that the evident projection of the codomain composes with this functor to give

idC. By Proposition 3.5.2.17, this is equivalent to giving such a functor into ChartD ,

which, by Proposition 3.5.0.2 is equivalent to giving a section of D. □

We may therefore define a systems theory associated to any category with display

maps (C,D) with such an endofunctor 𝑇 : C→ C and natural transformation 𝜋 : 𝑇 →
idC whose components are all display maps.

Definition 3.5.2.19. Let (C,D) be a category with display maps and let 𝑇 : C → C be

an endofunctor and 𝜋 : 𝑇 → idC a natural transformation whose components are all

display maps. Then this data forms a systems theory DispD ,𝑇 given by D : Cop → Cat
and the section induced by sending 𝐶 to 𝜋 : 𝑇𝐶 → 𝐶 in D(𝐶).

Example 3.5.2.20. LetC be a cartesian category andD be the class of product projections

up to isomorphism. We can define 𝑇 : C → C by 𝑇𝐶 := 𝐶 × 𝐶 and define 𝜋 : 𝑇 → id

by 𝜋𝐶 := 𝜋1 : 𝐶 × 𝐶 → 𝐶. The systems theory DispD ,𝑇 so defined is precisely the

deterministic systems theory of Definition 3.5.1.1.
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Example 3.5.2.21. LetC be a category with pullbacks andD = C be all maps. If we define

𝑇𝐶 := 𝐶 × 𝐶 and 𝜋 = 𝜋1 : 𝐶 × 𝐶 → 𝐶 in the same way as in Example 3.5.2.20, then the

systems theory DispC,𝑇 is the systems theory of dependent deterministic systems. The

main difference between this systems theory and the ordinary determinstic systems

theory is that what sort of input a system may take in can depend on the current

exposed variable. In particular, an interface for a dependent deterministic system S

will consist of a map 𝑣 : InS → OutS which we can think of sending each input to the

output it is valid for. The update is then of the form

StateS ×OutS InS StateS
updateS

In other words, updateS(𝑠, 𝑖) is defined when 𝑣(𝑖) = exposeS(𝑠), or when 𝑖 is an input

valid for the exposed variable exposeS(𝑠) of state 𝑠. We can think of each 𝑣−1(𝑜) for

𝑜 ∈ 𝑂 as a menu of available inputs given output 𝑜. We will talk a bit more about

dependent systems in Section 3.5.3.

With one last lemma, we will finally be able to define our general differential systems

theory.

Lemma 3.5.2.22. The tangent bundle 𝜋 : 𝑇𝑀 → 𝑀 of a manifold 𝑀 is a submersion.

Definition 3.5.2.23. The general differential systems theoryDiff is defined to be the display

category systems theory DispSubm,𝑇 associated to the Subm : Manop → Cat and the

tangent bundle functor 𝑇.

A dynamical system in the general differential systems theoryDiff consists of a state

space StateS, and output space OutS, but then a submersion of inputs 𝜋InS : InS → OutS.

We can think of 𝜋 as assigning to each input the output that it is valid for. The update

then has signature

updateS : expose
∗
S𝜋InS → 𝜋𝑇StateS

which is to say that it is a triangle of the form

StateS ×OutS InS 𝑇StateS

StateS

𝜋1

updateS

𝜋

which assigns to each state-input pair (𝑠, 𝑖)where 𝑖 is valid given the state 𝑠 in the sense

that exposeS(𝑠) = 𝜋InS(𝑖) to a tangent vector at 𝑠.

The general differential systems theory Diff answers the questions of Informal

Definition 1.1.0.2 in the following way:

1. A state is a point in a smooth manifold.
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2. The output is a smooth function of the state.

3. The kind of input can dependend on the current output, but it does so smoothly

(in the sense that the assignment sending an input to the output it is valid for is

a submersion).

4. A possible change in a state is given by a tangent vector.

5. For a state to change means that it is tending in this direction. That is, it has

derivative equal to the given tangent vector.

6. The changes in state vary smoothly with the input.

Example 3.5.2.24. Let’s see an example of a situation where the inputs may differ over

different outputs. Suppose we have a robot on a distant planet, and we are directing

it. When we tell it to move in a direction, the robot will move in the given direction at

a given speed 𝑘. We want to keep track of the position of the robot as it moves around

the planet.

We can model this situation as follows: since the surface of the planet is a sphere

and we want to keep track of where the robot is, we will let StateS = 𝑆2
be a sphere. We

will also have the robot reveal its position to us, so that OutS = 𝑆2
and exposeS = id.

Now, in any given position 𝑝 ∈ OutS, we want the space of inputs InSp valid for 𝑝

to be the directions we can give to the robot: that is to say, InSp � 𝑆1
should form a

circle. However, we want these directions to be directions that the robot could actually

travel, so we will let InSp = {𝑣 ∈ 𝑇𝑝OutS | |𝑣 | = 1} be the unit circle in the tangent space

at 𝑝. Then we may describe the fact that the robot moves in the direction we tell it by

defining

updateS(𝑠, 𝑖) = 𝑘𝑖.

We note that any system S in the Euclidean differential systems theory can be

considered as a system in the general differential systems theory by defining the bundle

of inputs to the 𝜋1 : OutS × InS → OutS and noting that the pullback of a product

projection is a product projection, so that we may take the domain of the new update

𝑢 : expose
∗
S
𝜋1 → 𝜋𝑇StateS to be StateS × InS, just as it was. We may then define

𝑢(𝑠, 𝑖) = (𝑠, updateS(𝑠, 𝑖)), equating 𝑇StateS = 𝑇R𝑛 with R𝑛 × R𝑛 . Later, when we

discuss change of systems theory, we will see that this follows from a morphism of
systems theories Euc→ Diff.

We can now describe periodic orbits as behaviors in the general differential systems

theory.

Example 3.5.2.25. Let Clockk be the system in Diff with:

• State space StateClockk = R/𝑘Z,

• Output space OutClockk = R/𝑘Zwith exposeClockk
= id.

• Input bundle the identity InClockk = idOutClockk
.

• Update updateClockk
: StateClockk → 𝑇StateClockk the assigning each state 𝑠 to
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the vector 𝑇𝑞(1), the pushforward of the constant vector 1 on R by the quotient

𝑞 : R→ R/𝑘Z.

The universal property ofR/𝑘Z says that a smooth function 𝛾 : R→ 𝑀 factors through

𝑞 : R→ R/𝑘Z if and only if 𝛾(𝑡 + 𝑘) = 𝛾(𝑡) for all 𝑡 ∈ R.

A chart for Clockk into a system S is a square

R/𝑘Z InS

R/𝑘Z OutS

𝑝

𝜋

𝑣

By the various universal properties involved, this is the same data as a pair of maps

𝑝̂ : R→ InS and 𝑣̂ : R→ OutS for which 𝑝̂(𝑡 + 𝑘) = 𝑝̂(𝑡) and 𝑣̂(𝑡 + 𝑘) = 𝑣̂(𝑡) for all 𝑡 ∈ R,

and for which 𝜋 ◦ 𝑖 = 𝑣̂.

Now, a behavior 𝜙 : Clockk → S is a square

(
𝑇(R/𝑘Z)
R/𝑘Z

) (
𝑇StateS

StateS

)

(
∗
R

) (
InS

OutS

)

©­«
𝑇𝜙

𝜙

ª®¬
©­«

1

id

ª®¬ ©­«
updateS

exposeS

ª®¬
©­«
𝑝

𝑣

ª®¬
Let 𝜙̂ : R→ StateS be 𝜙 ◦ 𝑞. First, this being a square means that exposeS ◦ 𝜙 = 𝑣, or

that exposeS(𝜙̂(𝑡)) = 𝑣(𝑡). Second, we have that

𝜙∗updateS ◦ 𝑝 = 𝑇𝜙 ◦ updateClockk
,

which is to say

updateS(𝜙(𝑡), 𝑝(𝑡)) = 𝑇𝜙(𝑇𝑞(1)).

Re-expressing this in terms of 𝜙̂ = 𝜙 ◦ 𝑞, we see that this means that

updateS(𝜙̂(𝑡), 𝑝̂(𝑡)) =
𝑑𝜙̂

𝑑𝑡
.

This says that 𝜙̂ is a trajectory for the system. Since by definition 𝜙̂ is periodic, and any

such periodic map would factor through 𝑞, we may conclude that behaviorsClockk → S

are periodic orbits (with period dividing 𝑘) of S.



160 CHAPTER 3. HOW SYSTEMS BEHAVE

3.5.3 Dependent deterministic systems theory

The systems theory Disp(C,𝑇) of display maps can also help us describe deterministic

systems theories in which the sorts of input a system can accept depend on the output

that system is currently exposing. These are called dependent deterministic systems.

Definition 3.5.3.1. Let (C,D) be a category with display maps (Definition 3.5.2.11) and

finite products, and suppose that product projections 𝜋1 : 𝐶×𝐷 → 𝐶 are display maps

(although there may be other display maps). Then we have a section 𝑇𝐶 = 𝐶×𝐶 𝜋1−→ 𝐶,

and so we may define the depdendent deterministic systems theory DpDet𝐶 to be the

display map systems theory Disp(C,D),𝑇 .

Let’s understand dependent deterministic systems in the category of sets with every

map taken as a display map.

Definition 3.5.3.2. A dependent deterministic system S in the category of sets consists of:

• A set StateS of states,

• A set OutS of outputs, and for each output 𝑜 ∈ OutS, a set InS(𝑜) of inputs valid

in output 𝑜. If we define InS :=
∑
𝑜∈OutS InS(𝑜) to be the disjoint union of all of

these ouput sets, then we can package this assignment 𝑜 ↦→ InS(𝑜) into a function

InS → OutS which sends an input to the output it is valid in. That is, the interface

of a dependent system is a dependent set.

• An exposed variable exposeS : StateS → OutS.

• For every state 𝑠 ∈ StateS, an update function updateS(𝑠,−) : InS(exposeS(𝑠)) →
StateS sending an input which is valid in the output exposed by 𝑠 to the next

state.

Example 3.5.3.3. Consider the following simple example of a dependent system. A

Diner accepts orders when it is open, but when it is closed it doesn’t. The set of possible

outputs, or orientations of the diner in it’s environment, isOutS = {open, closed}. When

the diner is closed it accepts no input, so InS(closed) = {tick} will simply represent

the ticking of time; other the other hand, when the diner is open then InS(open)will be

the set of possible orders.

Even in the case C = Set, the dependent deterministic systems theory is remarkably

rich. So rich, in fact, that David Spivak and Nelson Niu have written a whole book just

on this systems theory [NS]. So we’ll leave the details of this systems theory to them.

3.5.4 Non-deterministic systems theories

In this section, we will define the non-deterministic systems theories. We’ve already

done most of the work for this back in Chapter 2. In particular, in Theorem 2.6.4.5, we
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showed that to every commutative monad 𝑀 : C→ C on a cartesian category, there is

a monoidal strict indexed category

Ctx𝑀 : Cop → Cat

sending each object 𝐶 ∈ C to the category Ctx𝑀
𝐶

of Klesli maps 𝐶 × 𝑋 → 𝑀𝑌 in the

context of 𝐶. We will take this to be the indexed category underlying the systems

theory of non-deterministic systems associated to 𝑀; it remains to construct a section

𝑇.

Proposition 3.5.4.1. The assigment defined by

• 𝐶 ∈ C is assigned to 𝐶 ∈ Ctx𝑀
𝐶

, and

• 𝑓 : 𝐶′→ 𝐶 is assigned to

𝐶′ × 𝐶′
𝜋2

# 𝑓 #𝜂
−−−−→ 𝑀𝐶

yields a section 𝑇 : C→ Ctx𝑀− .

Proof. We see immediately that 𝑇id𝐶 = id𝑇𝐶 . It remains to show that for 𝑓 : 𝐶′ → 𝐶

and 𝑔 : 𝐶′′→ 𝐶′, we have

𝑇𝑔 # 𝑔∗𝑇 𝑓 = 𝑇(𝑔 # 𝑓 ).

In the do notation, the composite on the left is given by

(𝑐′′
1
, 𝑐′′

2
) ↦→

do
𝑐′← 𝜂(𝑔(𝑐′′

2
))

𝜂( 𝑓 (𝑐′))
= 𝜂( 𝑓 (𝑔(𝑐′′

2
)))

which is the right hand side. □

Definition 3.5.4.2. Let 𝑀 : C→ C be a commutative monad on a cartesian category C.

The 𝑀-flavored non-deterministic systems theory NonDet𝑀 is defined to be the indexed

category Ctx𝑀− : Cop → Cat together with section defined in Proposition 3.5.4.1.

The non-deterministic systems theory NonDet𝑀 answers the questions of Informal

Definition 1.1.0.2 in the following way (taking C = Set for concreteness):

1. A state is an element of a set.

2. The output is a deterministic function of the state.

3. The kind of input does not depend on the output.

4. A possible change in a state is given by an 𝑀-distribution over states (element of

𝑀StateS).

5. A state changes by transitioning into another state.

6. The changes in state vary arbitrarily with input.



162 CHAPTER 3. HOW SYSTEMS BEHAVE

Exercise 3.5.4.3. Answer these questions more specifically for the following systems

theories:

1. The non-deterministic Moore machine theory NonDetP.

2. The probabilistic systems theory NonDetD.

3. The worst-case cost systems theory NonDetCost.

♢

Behaviors in non-deterministic systems theory tend to be a little strict. This is

because the notion of trajectory is a bit more subtle in the non-deterministic case.

When does a sequence 𝑠 : N → StateS constitute a trajectory of the system S? Is it

when 𝑠𝑡 will transition to 𝑠𝑡+1 (in that updateS(𝑠𝑡 , 𝑖𝑡) = 𝜂(𝑠𝑡+1))? Or perhaps when it can
transition that way — but how do we express this notion in general?

While the notion of behavior we have given in this chapter works well for determin-

istic and differential systems theories, it does not work as well for non-deterministic

systems theories. Instead of asking whether or not a sequence of states is a trajectory,

we might instead want to ask how possible or likely it is for such a sequence of states to

occur through an evolution of the system. Figuring out how to express this idea nicely

and generally remains future work.

On the other hand, simulations of non-deterministic systems theories remain in-

teresting, because they tell us when we might be able to use a simpler model for our

system without changing the exposed behavior.

Jaz: I should include an example of non-deterministic simulation here.

3.6 Restriction of systems theories

Now that we have a concise, formal definition of dynamical system systems theories,

we can begin to treat systems theories as mathematical objects. In this section, we will

look at a simple way to construct a new systems theories from an old one: restriction
along a functor.

We will use restrictions of systems theories in order to more precisely control some

of the upcoming functoriality results. Often, we will only be able to prove a theorem

by restricting the systems theories beforehand.

Since a systems theories T consists of an indexed category A : Cop → Cat together

with a section 𝑇, if we have a functor 𝐹 : D → C then we should be able to produce a

new systems theories by composing A and 𝑇 with 𝐹. We call this new systems theories

T|𝐹 the restriction of T along 𝐹.

Definition 3.6.0.1. Let T = (A : Cop → Cat, 𝑇) be a systems theories of dynamical

systems. For any functor 𝐹 : D → C, we have a new systems theories

T|𝐹 := (A ◦ 𝐹op , 𝑇 ◦ 𝐹)
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where 𝑇 ◦ 𝐹 is the section given by

• (𝑇 ◦ 𝐹)(𝐷) := 𝑇(𝐹𝐷), and

• (𝑇◦𝐹)( 𝑓 ) := 𝑇(𝐹 𝑓 ), which may see has the correct codomain since (A◦𝐹op)( 𝑓 )(𝑇◦
𝐹)(𝐷) = A(𝐹 𝑓 )𝑇(𝐹𝐷).

Since an indexed category is no more than a functor into Cat, A ◦ 𝐹op
is an indexed

category. It only remains to check that 𝑇 ◦ 𝐹 as defined is indeed a section of the

Grothendieck construction of A ◦ 𝐹op
; this calculation is a straightforward unfolding

of definitions.

Example 3.6.0.2. In the next chapter we will see a few approximation methods as ways

of changing systems thories.

However, these approximations do not preserve all features of the systems theories;

in general, they are only exact for a restricted class of functions. For example, the Euler

method which approximates a differential equation

𝑑𝑠

𝑑𝑡
= 𝐹(𝑠, 𝑝)

on a Euclidean sace by the discrete-time update function

𝑢(𝑠, 𝑝) = 𝑠 + 𝜀𝐹(𝑠, 𝑝)

(for 𝜀 > 0) only exactly reproduces affine behaviors of systems. Being affine is a rather

severe restriction on the behavior of a dynamical system, but it does allow the important

case of steady states.

In order to capture Euler approximation as a change of systems theories in the exact

manner to be explored in the next chapter, we therefore need to restrict the Euclidean

differential systems theoriesEuc to affine functions. Recall that the indexing base ofEuc

is the category Euc of Euclidean spaces and differentiable functions. We may therefore

take our restriction functor to be the inclusion Aff ↩→ Euc of affine functions between

Euclidean spaces.

Now that we have the formalities out of the way, let’s understand what restricting

a systems theory means for the theory of systems in it. Because we have changed the

indexing base for the systems theory, we have changed the objects of states and exposed

variables, and the bottom part of both the lenses and charts.

In particular, the object of states of a T|𝐹-system is now an object of D and not of C.

The exposed variable exposeS : StateS → OutS is now a map in D. Furthermore, and

rather drastically, the underlying map 𝜙 : StateT → StateS of a behavior is also a map

in D.

Example 3.6.0.3. Continuing from Example 3.6.0.2, we may consider what a behavior
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represented by the system T =

(
𝑡 ↦→1

id

)
:

(
R
R

)
⇒

(
1
R

)
is in the restricted systems theory

Euc|Aff.

Since T represents trajectories in Euc, it will represent trajectories in Euc|Aff. How-

ever, we have restricted the underlying map 𝑠 : R → StateS to lie in Aff — that is, to

be affine. There are not often affine solutions to general differential equations, so for

the most part we will simply find that a system S has no trajectories (in this restricted

systems theory), or very few.

However, any constant function is affine; for this reason, all steady states are affine

functions, and so remain behaviors in this restricted systems theory.

3.7 Summary and Futher Reading

In this chapter, we looked at a variety of behaviors of systems in different systems theory

and saw that they could all be represented by the same equations relating charts with

lenses. We saw how behaviors can be represented by dynamical systems of particular

shapes — trajectories are represented by timelines, steady states by a single fixed point,

periodic orbits by clocks, etc. We introduced the double category of arenas to organize

charts and lenses, and finally gave a formal definition of theory of dynamical systems.

The notion of systems theory, the double category of arenas in a given systems

theory, and the definition of behavior of system that these enable are novel contributions

of this book. For a summary account, see [Jaz21].

For more on the theory on the systems theory of dependent lenses, see Spivak and

Niu’s book on polynomial functors (which remarkably form the same category) [NS].



Chapter 4

Change of Systems Theory

4.1 Introduction

In the last chapter, we saw a general formulation of the notion of behavior of system

and precise definition of the notion of systems theory. Let’s recall the definition of a

theory of dynamical systems.

Definition 4.1.0.1. A theory of dynamical systems consists of an indexed category A :

Cop → Cat together with a section 𝑇.

This concise definition packs a big punch. Describing a theory of dynamical sys-

tems amounts to answering the informal questions about what it means to be a sys-

tem:

Informal Definition 4.1.0.2. A theory of dynamical systems is a particular way to

answer the following questions about what it means to be a dynamical system:

1. What does it mean to be a state?

2. How should the output vary with the state — discretely, continuously, linearly?

3. Can the kinds of input a system takes in depend on what it’s putting out, and

how do they depend on it?

4. What sorts of changes are possible in a given state?

5. What does it mean for states to change.

6. How should the way the state changes vary with the input?

Constructing a systems theory is no small thing. But once we have a systems

theory, we have may work in its double category of arenas to quickly derive a few

compositionality results about systems.

Definition 4.1.0.3. Let A : Cop → Cat be an indexed category. Then the category of

165
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A-arenas is defined to be the Grothendieck double construction of A:

ArenaA := ⊏⊐
∬ 𝐶∈C

A(𝐶).

Note that the horizontal category of ArenaA is the category ChartA of A-charts

(generalizing Proposition 3.3.0.15), and the vertical category of ArenaA is the category

LensA of A-lenses (Definition 2.6.2.7).

We are now in peak category theory territory: the statements of our propositions

are far longer than their proofs, which amount to trivial calculations in the double

category of arenas. As in much of categorical work, the difficulty is in understanding

what to propose; once that work is done, the proof flows smoothly from the definitions.

Let’s see what composition of squares in the double category of arenas means

for systems. Horizontal composition is familiar because it’s what lets us compose

behaviors:

(
𝑇StateT

StateT

) (
𝑇StateS

StateS

) (
𝑇StateU

StateU

)

(
InT

OutT

) (
InS

OutS

) (
InU

OutU

)

©­«
𝑇𝜙

𝜙

ª®¬
©­«
updateT

exposeT

ª®¬

©­«
𝑇𝜓

𝜓

ª®¬
©­«
updateS

exposeS

ª®¬ ©­«
updateU

exposeU

ª®¬
©­«
𝑓♭

𝑓

ª®¬ ©­«
𝑔♭

𝑔

ª®¬

==

(
𝑇StateT

StateT

) (
𝑇StateU

StateU

)

(
InT

OutT

) (
InU

OutU

)

©­«
𝑇(𝜙#𝜓)

𝜙#𝜓

ª®¬
©­«
updateT

exposeT

ª®¬ ©­«
updateU

exposeU

ª®¬
©­«
𝑓♭

𝑓

ª®¬#©­«
𝑔♭

𝑔

ª®¬

So, we have a category of systems and behaviors in any systems theory, just as we

defined in the deterministic systems theory.

On the other hand, vertical composition tells us something else interesting: if you

get a chart

(
𝑔♭
𝑔

)
by wiring together a chart

(
𝑓♭
𝑓

)
, then a behavior 𝜙 with chart

(
𝑓♭
𝑓

)
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induces a behavior with chart

(
𝑔♭
𝑔

)
on the wired together systems.

(
𝑇StateT

StateT

) (
𝑇StateS

StateS

)

(
InT

OutT

) (
InS

OutS

)

(
𝐼

𝑂

) (
𝐼′

𝑂′

)

©­«
𝑇𝜙

𝜙

ª®¬
©­«
updateT

exposeT

ª®¬ ©­«
updateS

exposeS

ª®¬

©­«
𝑗♯

𝑗

ª®¬
©­«
𝑓♭

𝑓

ª®¬ ©­«
𝑘♯

𝑘

ª®¬
©­«
𝑔♭

𝑔

ª®¬

==

(
𝑇StateT

StateT

) (
𝑇StateS

StateS

)

(
𝐼

𝑂

) (
𝐼

𝑂′

)

©­«
𝑇𝜙

𝜓𝜙

ª®¬
©­«
𝑓 ♯

𝑓

ª®¬◦©­«
updateT

exposeT

ª®¬ ©­«
𝑘♯

𝑘

ª®¬◦©­«
updateS

exposeS

ª®¬
©­«
𝑔♭

𝑔

ª®¬

The interchange law of the double category of arenas tells us precisely that these

two sorts of composition of behaviors — composition as maps and wiring — commute.
That is, we can compose two behaviors and then wire them together, or we can wire

each together and then compose them; the end result is the same.

Example 4.1.0.4. Continuing from Example 3.4.1.4, suppose that we have a

(
𝑏−

𝑏+

)
-steady

state 𝑠 in a system S:

(
1

1

) (
StateS

StateS

)

(
1

1

) (
𝐵−

𝐵+

)

©­«
𝑠

𝑠

ª®¬
©­«
updateS

exposeS

ª®¬
©­«
𝑏+

𝑏−
ª®¬

(4.1)

We can see that 𝑠 is a

(
𝑑−

𝑑+

)
-steady state of the wired system by vertically composing the

square in Eq. (4.1) with the square in Eq. (3.8). This basic fact underlies our arguments

in the upcoming Section 5.2.

While our results are most smoothly proven in the double category of arenas, this

double category does not capture the way we think of systems and their behaviors. To

think of a behavior, we must first think of its chart; we solve a differential equation

in terms of its parameters, and to get a specific solution we must first choose specific
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parameters. Working in the double category of arenas means treating the chart

(
𝑓♭
𝑓

)
and the underlying map 𝜙 of a behavior on equal footing, but we would instead like to

say that 𝜙 is a behavior for the chart

(
𝑓♭
𝑓

)
.

We would also like to think of the wiring together of systems along a lens

(
𝑤♯

𝑤

)
as an

operation performed on systems, and then inquire into the relationship of this wiring

operation with the (horizontal) composition of behaviors.

What we need is to separate the interface of a system from the system itself. Charts

and lenses are best understood as ways of relating interfaces. It just so happens that

systems and their behaviors can also be expressed as certain sorts of lenses and charts,

which drastically facilitates our working with them. But there is some sense in which

this is not essential; the main point is that for each interface

(
𝐼
𝑂

)
we have a notion of

system with interface

(
𝐼
𝑂

)
, for each lens

(
𝑤♯

𝑤

)
:

(
𝐼
𝑂

)
⇆

(
𝐼′

𝑂′

)
a way of wiring

(
𝐼
𝑂

)
-

systems into

(
𝐼′

𝑂′

)
systems, and for each chart

(
𝑓♭
𝑓

)
:

(
𝐼
𝑂

)
⇒

(
𝐼′

𝑂′

)
a notion of behavior

for this chart. It is very convenient that we can describe wiring and composition of

behaviors in the same terms as charts and lenses, but we shouldn’t think that they are

the same thing.

In this chapter, we will define the appropriate abstract algebra of systems and

their two sorts of composition keeping in mind the separation between interfaces and

systems. We call this abstract algebra a doubly indexed category, since it is a sort of

double categorical generalization of an indexed category. We’ll see the definition of

this notion in Section 4.3. Later, in Chapter 6, we’ll see how this abstraction of the

algebra of composition of systems can be used to work in other doctrines of dynamical

systems — ways of thinking about what it means to be a systems theory at all.

Once we have organized our systems into doubly indexed categories, we can discuss

what it means to change our systems theory. A change of systems theory will be a

way of turning one sort of dynamical system into another. This could mean simply

re-interpreting the underlying structure (for example, a deterministic system where all

maps are differentiable is in particular a discrete deterministic system, just by forgetting

the differentiability) or by restricting the use of certain maps (as in Definition 3.6.0.1).

But it could also mean approximating one sort of system by another sort of system.

As an example, let’s consider the Euler method for approximating a differential

system. Suppose that (
updateS

exposeS

)
:

(
R𝑛

R𝑛

)
⇆

(
R𝑘

R𝑚

)
is a Euclidean differential system S. This represents the differential equation

𝑑𝑠

𝑑𝑡
= updateS(𝑠, 𝑝).

That is, a trajectory is a map 𝑠 : R → R𝑛 satisfying this differential equation (for a

choice of parameters 𝑝 : R → R𝑘). This means that the direction that the state 𝑠0 is
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tending is given by updateS(𝑠0 , 𝑝0). We could then approximate the solution, given

such a starting point, by moving a small distance in this direction. We could get a

whole sequence of states this way; moving in the direction our dynamics tells us we

should go, and then checking where to go from there.

The result is a deterministic system E𝜀(S)whose dynamics is given by

updateE𝜀(S)(𝑠, 𝑝) = 𝑠 + 𝜀 · updateS(𝑠, 𝑝).

Here, 𝜀 > 0 is some small increment. We can take E𝜀(S) to expose the same variable

that S does: exposeE𝜀(S) = exposeS.

The change of systems theory E𝜀 is the formula for changing from the Euclidean

differential systems theory to the deterministic systems theory on the cartesian category

of Euclidean spaces. We might wonder: how does changing the systems theory by

using the Euler method affect the wiring together of systems? How does it affect the

behaviors of the systems?

We can answer the question about behaviors here. It is not true that every be-

havior of a Euclidean differential system is faithfully represented by its Euler method

approximation. Consider, for example, the simply system

updateS(𝑠) = 𝑠

having one state variable, and no parameters. The trajectories of this system are of the

form 𝑠(𝑡) = 𝐶𝑒 𝑡 for some constant 𝐶. However, if we let 𝜀 = .1 and consider the Euler

approximation

updateE.1(S)(𝑠(0)) = 𝑠(0) + .1 · 𝑠(0) = 1.1 · 𝐶,

This is not the same thing as 𝑠(.1) = 𝐶𝑒 .1 ≈ 1.105 · 𝐶 (though, as expected, they are

rather close). So we see that general behaviors are not preserved!

However, suppose we have a steady state of the system. For example, taking 𝐶 = 0

we get a steady state of the system updateS(𝑠) = 𝑠 above. Then we have that

updateE.1(S)(0) = 0 + .1 · 0 = 0.

In other words, the steady state remains a steady state!

The goal of this chapter will be to introduce the formalism which enables us to

inquire into and prove various compositionality results concerning changes of systems

theory. In the above situation, we will see that the Euler method E𝜀 gives a change

of systems theory on a restriction of the Euclidean differential systems theory to affine

maps. As a result, it will preserve any behavior whose underlying map is affine (of the

form 𝜙(𝑣) = 𝐴𝑣 + 𝑏 for a matrix 𝐴 and vector 𝑏), which includes all steady states (since

constant maps are affine) but almost no trajectories in general.

We will introduce the notion of a doubly indexed functor to organize the composition-

ality results concerning change of systems theory. We will also be using these doubly

indexed functors in the next chapter to organize the compositionality of behaviors in

general.
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We will define the notion of change of systems theory formally (Definition 4.5.1.2)

and show that every change of systems theory gives rise to a doubly indexed functor

between the doubly indexed categories of systems in the respective systems theories.

In particular, we will show that there is a functor

Sys : Theory→ DblIx

sending a systems theory to the doubly indexed category of systems in it.

4.2 Composing behaviors in general

Before we get to this abstract defintion, we will take our time exploring the sorts of

compositionality results one may prove quickly by working in the double category of

arenas.

Recall the categories Sys
(
𝐼
𝑂

)
of systems with the interface

(
𝐼
𝑂

)
from Definition 3.3.1.1.

One thing that vertical composition in the double category of arenas shows us is that

wiring together systems is functorial with respect to simulations — that is, behaviors

that don’t change the interface.

We repeat the definition of Sys
(
𝐼
𝑂

)
for an arbitrary systems theory.

Definition 4.2.0.1. Let D = (A , 𝑇) be a theory of dynamical systems. For a A-arena(
𝐼
𝑂

)
, the category Sys

(
𝐼
𝑂

)
of D-systems with interface

(
𝐼
𝑂

)
is defined by:

• Its objects are A-lenses

(
updateS
exposeS

)
:

(
𝑇StateS
StateS

)
⇆

(
𝐼
𝑂

)
, which are systems in this

systems theory (Definition 3.5.0.5).

• Its maps are simulations, the behaviors which have identity chart. That is, the

maps are the squares

(
𝑇StateT

StateT

) (
𝑇StateS

StateS

)

(
𝐼

𝑂

) (
𝐼

𝑂

)

©­«
𝑇𝜙

𝜙

ª®¬
©­«
updateT

exposeT

ª®¬ ©­«
updateS

exposeS

ª®¬

• Composition is given by horizontal composition in the double category ArenaA
of A-arenas.

Now, thanks to the double category of arenas, we can show that every lens

(
𝑓 ♯

𝑓

)
:
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𝐼
𝑂

)
⇆

(
𝐼′

𝑂′

)
gives a functor

Sys

(
𝑓 ♯

𝑓

)
: Sys

(
𝐼

𝑂

)
→ Sys

(
𝐼

𝑂

)
.

We can see this functor as the operation of wiring together our

(
𝐼
𝑂

)
-systems along

the lens

(
𝑓 ♯

𝑓

)
to get

(
𝐼′

𝑂′

)
-systems. The functoriality of this operation say that wiring

preserves simulations — if systemsSi simulateTi by𝜙𝑖 , then the wired together systems

S simulate T by 𝜙 =
∏

𝑖 𝜙𝑖 .

Proposition 4.2.0.2. For a lens

(
𝑓 ♯

𝑓

)
:

(
𝐼
𝑂

)
⇆

(
𝐼′

𝑂′

)
, we get a functor

Sys

(
𝑓 ♯

𝑓

)
: Sys

(
𝐼

𝑂

)
→ Sys

(
𝐼

𝑂

)
Given by composing with

(
𝑓 ♯

𝑓

)
:

• For a system S =

(
updateS
exposeS

)
:

(
𝑇StateS
StateS

)
⇆

(
𝐼
𝑂

)
,

Sys

(
𝑓 ♯

𝑓

)
(S) =

(
updateS

exposeS

)
#

(
𝑓 ♯

𝑓

)
.

• For a behavior, Sys
(
𝑓 ♯

𝑓

)
acts in the following way:

(
𝑇StateT

StateT

) (
𝑇StateS

StateS

)

(
𝐼

𝑂

) (
𝐼

𝑂′

)

©­«
𝑇𝜙

𝜙

ª®¬
©­«
updateT

exposeT

ª®¬ ©­«
updateS

exposeS

ª®¬ ↦→

(
𝑇StateT

StateT

) (
𝑇StateS

StateS

)

(
InT

OutT

) (
InS

OutS

)

(
𝐼

𝑂

) (
𝐼′

𝑂′

)

©­«
𝑇𝜙

𝜙

ª®¬
©­«
updateT

exposeT

ª®¬ ©­«
updateS

exposeS

ª®¬

©­«
𝑓 ♯

𝑓

ª®¬ ©­«
𝑓 ♯

𝑓

ª®¬

Proof. The functoriality of this construction can be seen immediately from the inter-
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change law of the double category:

(
𝑇𝜙
𝜙

)���( 𝑇𝜓𝜓 )(
𝑓 ♯

𝑓

) =

(
𝑇𝜙
𝜙

)���( 𝑇𝜓𝜓 )(
𝑓 ♯

𝑓

)���( 𝑓 ♯
𝑓

) by the horizontal identity law,

=

(
𝑇𝜙
𝜙

)(
𝑓 ♯

𝑓

)
�������
(
𝑇𝜓
𝜓

)(
𝑓 ♯

𝑓

) by the interchange law.

Identities are clearly preserved, since the underlying morphism 𝜙 : StateT → StateS is

not changed. □

The notion of profunctor gives us a nice way to understand the relationship between

a behavior 𝜙 : T→ S and its chart

(
𝑓♭
𝑓

)
:

(
𝐼
𝑂

)
⇒

(
𝐼′

𝑂′

)
. When we are using behaviors,

we usually have the chart

(
𝑓♭
𝑓

)
in mind first, and then look for behaviors with this chart.

For example, when finding trajectories, we first set the parameters for our system and

then solve it. We can use profunctors to formalize this relationship.
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Proposition 4.2.0.3. Given a chart

(
𝑓♭
𝑓

)
:

(
𝐼
𝑂

)
⇒

(
𝐼′

𝑂′

)
, we get a profunctor

Sys

(
𝑓♭

𝑓

)
: Sys

(
𝐼

𝑂

)
Sys

(
𝐼′

𝑂′

)
Defined by:

Sys

(
𝑓♭

𝑓

)
(T, S) =

{
𝜙 : StateT → StateS

����� 𝜙 is a behavior with chart

(
𝑓♭

𝑓

)}

=



(
StateT

StateT

) (
StateS

StateS

)

(
InT

OutT

) (
InS

OutS

)

©­«
𝜙◦𝜋2

𝜙

ª®¬
©­«
updateT

exposeT

ª®¬ ©­«
updateS

exposeS

ª®¬
©­«
𝑓♭

𝑓

ª®¬


The action of the profunctor Sys

(
𝑓♭
𝑓

)
on simulations in the categories Sys

(
𝐼
𝑂

)
and

Sys
(
𝐼′

𝑂′

)
is given by composition on the left and right. That is, for simulations 𝜙 : T′→

T and 𝜓 : S→ S′ and

(
𝑓♭
𝑓

)
-behavior 𝛽 ∈ Sys

(
𝑓♭
𝑓

)
(T, S), we define

𝜙 · 𝛽 · 𝜓 := 𝜙 | 𝛽 | 𝜓. (4.2)

Exercise 4.2.0.4. Prove Proposition 4.2.0.3. That is, show that the action defined in

Eq. (4.2) is functorial, giving a functor

Sys
(
𝐼
𝑂

)
op

× Sys
(
𝐼′

𝑂′

)
→ Set.

(Hint: use the double categorical notation. It will be much more concise.) ♢

With a little work in the double category of arenas, we can give a very useful example

of a square in the double category of profunctors. Consider this square in the double
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category of arenas:

𝛼 =

(
𝐼1

𝑂1

) (
𝐼2

𝑂2

)

(
𝐼3

𝑂3

) (
𝐼4

𝑂4

)©­«
𝑗♭

𝑗

ª®¬

©­«
𝑓 ♯

𝑓

ª®¬
©­«
𝑘♯

𝑘

ª®¬
©­«
𝑔♭

𝑔

ª®¬
As we saw in Proposition 4.2.0.2, we get functors Sys

(
𝑗♯

𝑗

)
: Sys

(
𝐼1
𝑂1

)
→ Sys

(
𝐼3
𝑂3

)
and Sys

(
𝑘♯

𝑘

)
: Sys

(
𝐼2
𝑂2

)
→ Sys

(
𝐼4
𝑂4

)
given by composing with these lenses. We also

saw in Proposition 4.2.0.3 that we get profunctors Sys
(
𝑓♭
𝑓

)
: Sys

(
𝐼1
𝑂1

)
Sys

(
𝐼2
𝑂2

)
and

Sys
(
𝑔♭
𝑔

)
: Sys

(
𝐼3
𝑂3

)
Sys

(
𝐼4
𝑂4

)
from these charts. Now let’s see how to get a square

of profunctors from the square 𝛼 in the double category of arenas:

Sys
(
𝐼1
𝑂1

)
Sys

(
𝐼2
𝑂2

)
Sys(𝛼)

Sys
(
𝐼3
𝑂3

)
Sys

(
𝐼4
𝑂4

)

Sys©­«
𝑓♭

𝑓

ª®¬

Sys
(
𝑗♯

𝑗

)
Sys

(
𝑘♯

𝑘

)

Sys©­«
𝑔♭

𝑔

ª®¬
That is, a natural transformation of the following signature:

Sys(𝛼) : Sys

(
𝑓♭

𝑓

)
→ Sys

(
𝑔♭

𝑔

) (
Sys

(
𝑗♯

𝑗

)
, Sys

(
𝑘♯

𝑘

))
.

To define the natural transformation Sys(𝛼), we need to say what it does to an

element 𝜙 ∈ Sys
(
𝑓♭
𝑓

)
(T, S). Recall that the elements of this profunctor are behaviors
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with chart

(
𝑓♭
𝑓

)
, so really 𝜙 is a square

𝜙 =

(
𝑇StateT

StateT

) (
𝑇StateS

StateS

)

(
𝐼1

𝑂1

) (
𝐼2

𝑂2

)

©­«
𝑇𝜙

𝜙

ª®¬
©­«
updateT

exposeT

ª®¬ ©­«
updateS

exposeS

ª®¬
©­«
𝑓♭

𝑓

ª®¬
in the double category of arenas. Therefore, we can define Sys(𝛼)(𝜙) to be the vertical

composite:

(
𝑇StateT

StateT

) (
𝑇StateS

StateS

)

(
𝐼1

𝑂1

) (
𝐼2

𝑂2

)

(
𝐼3

𝑂3

) (
𝐼4

𝑂4

)

©­«
𝑇𝜙

𝜙

ª®¬
©­«
updateT

exposeT

ª®¬ ©­«
updateS

exposeS

ª®¬

©­«
𝑗♯

𝑗

ª®¬
©­«
𝑓♭

𝑓

ª®¬ ©­«
𝑘♯

𝑘

ª®¬
©­«
𝑔♭

𝑔

ª®¬
Or, a little more concisely in double category notation:

Sys(𝛼)(𝜙) =
𝜙

𝛼
.

We record this observation in a proposition.
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Proposition 4.2.0.5. Given a square

𝛼 =

(
𝐼1

𝑂1

) (
𝐼2

𝑂2

)

(
𝐼3

𝑂3

) (
𝐼4

𝑂4

)©­«
𝑗♭

𝑗

ª®¬

©­«
𝑓 ♯

𝑓

ª®¬
©­«
𝑘♯

𝑘

ª®¬
©­«
𝑔♭

𝑔

ª®¬
in the double category of arenas, we get a square

Sys
(
𝐼1
𝑂1

)
Sys

(
𝐼2
𝑂2

)
Sys(𝛼)

Sys
(
𝐼3
𝑂3

)
Sys

(
𝐼4
𝑂4

)

Sys©­«
𝑓♭

𝑓

ª®¬

Sys
(
𝑗♯

𝑗

)
Sys

(
𝑘♯

𝑘

)

Sys©­«
𝑔♭

𝑔

ª®¬
in the double category of categories, functors, and profunctors given by

Sys(𝛼)(𝜙) =
𝜙

𝛼
.

The naturality of this transformation follows from the double category laws. We

leave the particulars as an exercise.

Exercise 4.2.0.6. Prove that the family of functions

Sys(𝛼) : Sys

(
𝑓♭

𝑓

)
→ Sys

(
𝑔♭

𝑔

) (
Sys

(
𝑗♯

𝑗

)
, Sys

(
𝑘♯

𝑘

))
defined in Proposition 4.2.0.5 is a natural transformation. (Hint: use the double cate-

gory notation, it will be much more concise.) ♢
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4.3 Arranging categories along two kinds of composition:
Doubly indexed categories

While we described a category of systems and behaviors in Proposition 3.3.0.17, we

haven’t been thinking of systems in quite this way. We have been organizing our

systems a bit more particularly than just throwing them into one large category. We’ve

made the following observations:

• Each system has an interface, and many different systems can have the same

interface. From this observation, we defined the categories Sys
(
𝐼
𝑂

)
of systems

with the interface

(
𝐼
𝑂

)
in Definition 3.3.1.1.

• Every wiring diagram, or more generally lens, gives us an operation that changes

the interface of a system by wiring things together. We formalized this observa-

tion into a functor Sys
(
𝑤♯

𝑤

)
: Sys

(
𝐼
𝑂

)
→ Sys

(
𝐼′

𝑂′

)
in Proposition 4.2.0.2.

• To describe the behavior of a system, first we have to chart out how it will

look on its interface. We formalized this observation by giving a profunctor

Sys
(
𝑓♭
𝑓

)
: Sys

(
𝐼
𝑂

)
Sys

(
𝐼′

𝑂′

)
for each chart in Proposition 4.2.0.3.

• If we wire together a chart for one interface into a chart for the wired interface,

then every behavior for that chart gives rise to a behavior for the wired together

chart. We formalized this observation as a morphism of profunctors

Sys(𝛼) : Sys

(
𝑓♭

𝑓

)
→ Sys

(
𝑔♭

𝑔

) (
Sys

(
𝑗♯

𝑗

)
, Sys

(
𝑘♯

𝑘

))
in Proposition 4.2.0.5.

Now comes the time to organize all these observations. In this section, we will see

that collectively, these observations are telling us that there is an doubly indexed category
of dynamical systems. We will also see that matrices of sets give rise to a doubly

indexed category which we will call the doubly indexed category of vectors of sets.

Definition 4.3.0.1. A doubly indexed category A : D → Cat consists of the following:
a

• A double category D called the indexing base.
• For every object 𝐷 ∈ D, we have a category A(𝐷).
• For every vertical arrow 𝑗 : 𝐷 → 𝐷′, we have a functor A(𝑗) : A(𝐷) →A(𝐷′).
• For every horizontal arrow 𝑓 : 𝐷 → 𝐷′, we have a profunctorA( 𝑓 ) : A(𝐷) A(𝐷′).
• For every square

𝐴 𝐵

𝛼

𝐶 𝐷

𝑗

𝑓

𝑘

𝑔
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in D, a square

A(𝐴) A(𝐵)

A(𝛼)

A(𝐶) A(𝐷)

A(𝑗)

A( 𝑓 )

A(𝑘)

A(𝑔)

in Cat.
• For any two horizontal maps 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶 in D, we have a square

𝜇 𝑓 ,𝑔 : A( 𝑓 ) ⊙A(𝑔) →A( 𝑓 | 𝑔) called the compositor:

A(𝐴) A(𝐵) A(𝐸)

𝜇 𝑓 ,𝑔

A(𝐴) A(𝐶)

A( 𝑓 ) A( 𝑓 )

A( 𝑓 |𝑔)

(4.3)

This data is required to satisfy the following laws:

• (Vertical Functoriality) For vertical maps 𝑗 : 𝐷 → 𝐷′ and 𝑘 : 𝐷′ → 𝐷′′, we have

that

A

(
𝑗

𝑘

)
=

A(𝑗)
A(𝑘)

and that A(id𝐷) = idA(𝐷).
b

• (Horizontal Lax Functoriality) For horizontal maps 𝑓 : 𝐷1 → 𝐷2, 𝑔 : 𝐷2 → 𝐷3

and ℎ : 𝐷3 → 𝐷4, the compositors 𝜇 satisfy the following associativity and

unitality conditions:

– (Associativity)

𝜇 𝑓 ,𝑔 |A(ℎ)
𝜇( 𝑓 |𝑔),ℎ

·
==

A( 𝑓 )|𝜇𝑔 ,ℎ

𝜇 𝑓 ,(𝑔 |ℎ)
.

– (Unitality) The profunctor A(id𝐷1
) : A(𝐷1) A(𝐷1) is the identity pro-

functor, A(id𝐷1
) = A(𝐷1). Furthermore, 𝜇id𝐷

1
, 𝑓 and 𝜇 𝑓 ,id𝐷

2

are equal to the

isomorphisms of Exercise 3.4.3.3 given by the naturality of A( 𝑓 ) on the left

and right respectively. We may sumarize this may saying that

𝜇id, 𝑓 = idA( 𝑓 ) = 𝜇 𝑓 ,id.

• (Naturality of Compositors) For any horizontally composable squares

𝐴 𝐵

𝛼

𝐶 𝐷

𝑗

𝑓1

𝑘

𝑔1

and

𝐵 𝐸

𝛼

𝐷 𝐹

𝑘

𝑓2

𝑙

𝑔2
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A(𝛼) | A(𝛽)
𝜇𝑔1 ,𝑔2

=
𝜇 𝑓1 , 𝑓2

A(𝛼 | 𝛽) .

a
This is what an expert would call a unital (or normal) lax double functor, but we won’t need this concept

in any other setting.

b
Here, we are hiding some coherence issues. While our doubly indexed category of deterministic

systems will satisfy this functoriality condition on the nose, we will soon see a doubly indexed category

of matrices of sets for which this law only holds up to a coherence isomorphism. Again, the issue invovles

shuffling parentheses around, and we will sweep it under the rug.

That’s another big definition! It seems like it will be a slog to actually ever prove

that something is a doubly indexed category. Luckily, in our cases, these proofs will go

quite smoothly. This is because each of the three laws of a doubly indexed category has

a sort of sister law from the definition of a double category which will help us prove it.

• The Vertical Functoriality law will often involve the vertical associativity and

unitality of squares in the indexing base.

• The Horizontal Lax Functoriality law will often involve the horizontal associativ-

ity and unitality of squares in the indexing base.

• The Naturality of Compositors law will often involve the interchange law in the

indexing base.

We’ll see how these sisterhoods play out in practice as we define the doubly indexed

categories of deterministic systems and vectors of sets.

The doubly indexed category of systems Let’s show that systems in a systems theory

D do indeed form a doubly indexed category

SysD : ArenaD → Cat.

Definition 4.3.0.2. The doubly indexed category SysD : ArenaD → Cat of systems in

the systems theory D = (A , 𝑇) is defined as follows:

• Our indexing base is the double category ArenaD of arenas, since we will arrange

our systems according to their interface.

• To every arena

(
𝐼
𝑂

)
, we associate the category Sys

(
𝐼
𝑂

)
of systems with interface(

𝐼
𝑂

)
and behaviors whose chart is the identity chart on

(
𝐼
𝑂

)
(Definition 4.2.0.1).

• To every lens

(
𝑤♯

𝑤

)
:

(
𝐼
𝑂

)
⇆

(
𝐼′

𝑂′

)
, we associate the functor Sys

(
𝑤♯

𝑤

)
: Sys

(
𝐼
𝑂

)
→

Sys
(
𝐼
𝑂

)
given by wiring according to

(
𝑤♯

𝑤

)
:

Sys

(
𝑤♯

𝑤

)
(S) = S(

𝑤♯

𝑤

) .
This is defined in Proposition 4.2.0.2.
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• To every chart

(
𝑓♭
𝑓

)
:

(
𝐼
𝑂

)
⇒

(
𝐼′

𝑂′

)
, we associate the profunctor Sys

(
𝑓♭
𝑓

)
:

Sys
(
𝐼
𝑂

)
Sys

(
𝐼′

𝑂′

)
which sends the

(
𝐼
𝑂

)
-system T and the

(
𝐼′

𝑂′

)
-system S to

the set of behaviors T→ S with chart

(
𝑓♭
𝑓

)
:

Sys

(
𝑓♭

𝑓

)
(T, S) =

{
𝜙 : StateT → StateS

����� 𝜙 is a behavior with chart

(
𝑓♭

𝑓

)}

=



(
𝑇StateT

StateT

) (
𝑇StateS

StateS

)

(
InT

OutT

) (
InS

OutS

)

©­«
𝑇𝜙

𝜙

ª®¬
©­«
updateT

exposeT

ª®¬ ©­«
updateS

exposeS

ª®¬
©­«
𝑓 ♯

𝑓

ª®¬


We saw this profunctor in Proposition 4.2.0.3.

• To every square 𝛼, we assign the morphism of profunctors given by composing

vertically with 𝛼 in Arena:

Sys(𝛼)(𝜙) =
𝜙

𝛼
.

We saw in Exercise 4.2.0.6 that this was a natural transformation.

• The compositor is given by horizontal composition in the double category of

arenas:

𝜇(
𝑓♭
𝑓

)
,

(
𝑔♭
𝑔

)
: Sys

(
𝑓♭
𝑓

)
⊙ Sys

(
𝑔♭
𝑔

)
→ Sys

((
𝑓♭
𝑓

)
#
(
𝑔♭
𝑔

))
(𝜙,𝜓) ↦→ 𝜙 | 𝜓

Let’s check now that this does indeed satisfy the laws of a doubly indexed category.

The task may appear to loom over us; there are quite a few laws, and there is a lot of

data involved. But nicely, they all follow quickly from a bit of fiddling in the double

category of arenas.

• (Vertical Functoriality) We show that Sys
((

𝑘♯

𝑘

)
◦

(
𝑗♯

𝑗

))
= Sys

(
𝑘♯

𝑘

)
◦ Sys

(
𝑗♯

𝑗

)
by

vertical associativity:

Sys

((
𝑘♯

𝑘

)
◦

(
𝑗♯

𝑗

))
(𝜙) =

𝜙

©­«
(
𝑗♯

𝑗

)
(
𝑘♯

𝑘

) ª®¬
=

©­« 𝜙(
𝑗♯

𝑗

) ª®¬(
𝑘♯

𝑘

)
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= Sys

(
𝑘♯

𝑘

)
◦ Sys

(
𝑗♯

𝑗

)
(𝜙).

• (Horizontal Lax Functoriality) This law follows from horizontal associativity in

Arena.

𝜇(𝜇(𝜙,𝜓), 𝜉) = (𝜙 | 𝜓) | 𝜉 = 𝜙 | (𝜓 | 𝜉) = 𝜇(𝜙, 𝜇(𝜓, 𝜉)). (4.4)

• (Naturality of Compositor) This law follows from interchange in Arena.(
Sys(𝛼) | Sys(𝛽)

𝜇

)
(𝜙,𝜓) =

𝜙

𝛼

����𝜓𝛽 =
𝜙 | 𝜓
𝛼 | 𝛽

=

(
𝜇

Sys(𝛼 | 𝛽)

)
(𝜙,𝜓).

The doubly indexed category of vectors of sets In addition to our doubly indexed

category of systems, we have a doubly indexed category of “vectors of sets”.

Classically, an 𝑚 × 𝑛 matrix 𝑀 can act on a vector 𝑣 of length 𝑛 by multiplication

to get another vector 𝑀𝑣 of length 𝑚. We can generalize this to matrices of sets if we

define a vector of sets of length 𝐴 to be a dependent set 𝑉 : 𝐴→ Set.

Definition 4.3.0.3. For a set 𝐴, we define the category of vectors of sets of length 𝐴 to be

Vec(𝐴) B Set𝐴

the category of sets depending on 𝐴.

Given a (𝐵 × 𝐴)-matrix 𝑀 : 𝐵 × 𝐴 → Set (as in Definition 3.4.2.1), we can treat a

𝐴-vector 𝑉 as a 𝐴 × 1 matrix and form the 𝐵 × 1 matrix 𝑀𝑉 . This gives us a functor

Vec(𝑀) : Vec(𝐴) → Vec(𝐵)
𝑉 ↦→ (𝑀𝑉)𝑏 =

∑
𝑎∈𝐴

𝑀𝑏𝑎 ×𝑉𝑎

𝑓 : 𝑉 →𝑊 ↦→ ((𝑎, 𝑚, 𝑣) ↦→ (𝑎, 𝑚, 𝑓 (𝑣)))

which we refer to as the linear functor given by 𝑀.

Definition 4.3.0.4. The doubly indexed category Vec : Matrix→ Cat of vectors of sets

is defined by:

• Its indexing base is the double category of matrices of sets.

• To every set 𝐴, we assign the category Vec(𝐴) = Set𝐴 of vectors of length 𝐴.

• To every (𝐵 × 𝐴)-matrix 𝑀 : 𝐴 → 𝐵, we assign the linear functor Vec(𝑀) :

Vec(𝐴) → Vec(𝐵) given by 𝑀 (Definition 4.3.0.3).

• To every function 𝑓 : 𝐴→ 𝐵, we associate the profunctor
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Vec( 𝑓 ) : Vec(𝐴) Vec(𝐵) defined by

Vec( 𝑓 )(𝑉,𝑊) = {𝐹 : (𝑎 ∈ 𝐴) → 𝑉𝑎 →𝑊𝑓 (𝑎)}.

That is, 𝐹 ∈ Vec( 𝑓 )(𝑉,𝑊) is a family of functions 𝐹(𝑎,−) : 𝑉𝑎 →𝑊𝑓 (𝑎) indexed by

𝑎 ∈ 𝐴. This is natural by index-wise composition.

• To every square

𝐴 𝐵

𝛼

𝐶 𝐷

𝑀

𝑓

𝑁

𝑔

that is, family of functions 𝛼𝑐𝑎 : 𝑀𝑐𝑎 → 𝑁𝑔(𝑐) 𝑓 (𝑎), we associate the square

Vec(𝐴) Vec(𝐵)

Vec(𝛼)

Vec(𝐶) Vec(𝐷)

Vec(𝑀)

Vec( 𝑓 )

Vec(𝑁)

Vec(𝑔)

defined by sending a family of functions 𝐹 : (𝑎 ∈ 𝐴) → 𝑉𝑎 →𝑊𝑓 (𝑎) in Vec( 𝑓 )(𝑉,𝑊)
to the family

Vec(𝛼)(𝐹) : (𝑐 ∈ 𝐶) → 𝑀𝑉𝑐 → 𝑀𝑊𝑔(𝑐)

Vec(𝛼)(𝐹)(𝑐, (𝑎, 𝑚, 𝑣)) = ( 𝑓 (𝑎), 𝛼(𝑚), 𝐹(𝑎, 𝑣))

That is, Vec(𝛼)(𝐹)(𝑐,−) takes an element (𝑎, 𝑚, 𝑣) ∈ 𝑀𝑉𝑐 =
∑
𝑎∈𝐴𝑀𝑐𝑎 × 𝑉𝑎 and

gives the elements ( 𝑓 (𝑎), 𝛼(𝑚), 𝐹(𝑎, 𝑣)) of 𝑀𝑊𝑔(𝑐) =
∑
𝑏∈𝐵 𝑁𝑔(𝑐)𝑏 ×𝑊𝑏 .

• The compositor is given by componentwise composition: If 𝑓 : 𝐴 → 𝐵 and

𝑔 : 𝐵→ 𝐶 and 𝐹 ∈ Vec( 𝑓 )(𝑉,𝑊) and 𝐺 ∈ Vec(𝑔)(𝑊,𝑈), then

𝜇 𝑓 ,𝑔(𝐹, 𝐺) : (𝑎 ∈ 𝐴) → 𝑉𝑎 → 𝑈𝑔 𝑓 (𝑎)

𝜇 𝑓 ,𝑔(𝐹, 𝐺)(𝑎, 𝑣) B 𝐺( 𝑓 (𝑎), 𝐹(𝑎, 𝑣)).

It might seem like it will turn out to be a big hassle to show that this definition

satisfies all the laws of a doubly indexed category. Like with the doubly indexed

category of arenas, we will find that all the laws follow for matrices by fiddling around

in the double category of matrices.

Let’s first rephrase the above definition in terms of the category of matrices. We note

that a vector of sets 𝑉 ∈ Vec(𝐴) is equivalently a matrix 𝑉 : 1 → 𝐴. Then the linear

functor Vec(𝑀) : Vec(𝐴) → Vec(𝐵) is given by matrix multiplication, or in double

category notation:

Vec(𝑀)(𝑉) = 𝑉

𝑀
.
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This means that the Vertical Functoriality law follows by vertical associativity in the

double category of matrices, which is to say associativity of matrix multiplication.

Similarly, we can interpret the profunctor Vec( 𝑓 ) for 𝑓 : 𝐴 → 𝐵 in terms of the

double category Matrix. An element 𝐹 ∈ Vec( 𝑓 )(𝑉,𝑊) is equivalently a square of the

following form in Matrix:

1 1

𝐹

𝐴 𝐵

𝑉 𝑊

𝑓

Therefore, we can describe Vec( 𝑓 )(𝑉,𝑊) as the following set of squares in Matrix:

Vec( 𝑓 )(𝑉,𝑊) =


𝐹

�����������
1 1

𝐹

𝐴 𝐵

𝑉 𝑊

𝑓


Then the Horizontal Lax Functoriality laws follow from associativity and unitality of

horizontal composition of squares in Matrix!

Finally, we need to interpret the rather fiddly transformation Vec(𝛼) in terms of

the double category of matrices. Its a matter of unfolding the definitions to see that

Vec(𝛼)(𝐹) = 𝐹
𝛼 in Matrix, and therefore that the Naturality of Compositors law follows

by the interchange law.

If this argument seemed wholly too similar to the one we gave for the doubly indexed

category of systems, your suspicions are not misplaced. These are both are instances

of a very general vertical slice construction, which we turn our attention to now.

4.4 Vertical Slice Construction

In the previous section, we constructed the doubly indexed categories SysD of systems

in a systems theoryD and Vec of vectors of sets “by hand”. However, both constructions

felt very familiar. In this section, we will show that they are both instances of a general

construction: the vertical slice construction.

The main reason for recasting the above constructions in more general terms is that

it will facilitate our main theorem of this chapter: change of systems theory.

The vertical slice construction will take a double functor 𝐹 : D0 → D1 and produce

a doubly indexed category 𝜎𝐹 : D1 → Cat indexed by its codomain. So, in order to

describe the vertical slice construction, we will need the notion of double functor. We

will need the notion of double functor for much of the coming theory as well
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4.4.1 Double Functors

A double functor is the correct sort of functor between double categories. Just as a dou-

ble category has a bit more than twice the information involved in a category, a double

functor has a bit more than twice the information involved in a functor.

Definition 4.4.1.1. Let D0 and D1 be double categories. A double functor F : D0 → D1

consists of:

• An object assignment 𝐹 : ObD0 → ObD1 which assigns an object 𝐹𝐷 in D1 to

each object 𝐷 in D0.

• A vertical functor 𝐹 : 𝑣D0 → 𝑣D1 on the vertical categories, which acts the same

as the object assignment on objects.

• A horizontal functor 𝐹 : ℎD0 → ℎD1 on the horizontal categories, which acts the

same as the object assignment on objects.

• For every square

𝐴 𝐵

𝛼

𝐶 𝐷

𝑗

𝑓

𝑘

𝑔

in D0, a square

𝐹𝐴 𝐹𝐵

𝐹𝛼

𝐹𝐶 𝐹𝐷

𝐹𝑗

𝐹 𝑓

𝐹𝑘

𝐹𝑔

such that the following laws hold:

– 𝐹 commutes with horizontal compostition: 𝐹(𝛼 | 𝛽) = 𝐹𝛼 | 𝐹𝛽.

– 𝐹 commutes with vertical comopsition: 𝐹
(
𝛼
𝛽

)
= 𝐹𝛼

𝐹𝛽 .

– 𝐹 sends horizontal identities to horizontal identities, and vertical identities

to vertical identities.

Remark 4.4.1.2. There is, in fact, a double category of double functors 𝐹 : D0 → D1, but

we won’t need to worry about this until we consider the functoriality of the vertical

slice construction in Section 4.4.4.

We will, in time, see many interesting examples of double functors. However, we

will begin with the two simple examples we need to construct the doubly indexed

categories Sys and Vec.

Example 4.4.1.3. Let D = (A : Cop → Cat, 𝑇) be a systems theory. We recall that the

section 𝑇 : C →
∫ 𝐶:C

A(𝐶) is a functor to the Grothendieck construction of A. We

may promote this into a double functor into the double category of arenas ArenaD in

a rather simple way.
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Since the horizontal category of ArenaD is

∫ 𝐶:C
A(𝐶), the category of charts, we

may consider 𝑇 as a double functor

ℎ𝑇 : ℎC→ ArenaD

from the double category ℎC given by defining its horizontal category to be C and

taking its vertical category and its squares to consist only of identities. Its worth taking

a minute to check this trivial observation against the definition of a double functor.

Example 4.4.1.4. There is a double category 1 with just one object ∗ and only identity

maps and squares. A double functor 𝐹 : 1 → D simply picks out the object 𝐹(∗);
there is no other data involved, since everything else must get sent to the appropriate

identities.

In particular, the one element set 1 is an object of the double category Matrix of sets,

functions, and matrices. Therefore, there is a double functor 1 : 1 → Matrix picking

out this special element.

Now that we have a notion of double functor, we can define a category Dbl of double

categories.

Definition 4.4.1.5. The category Dbl of double categories has as its objects the double

categories and as its maps the double functors.

From any indexed category A, we can form the double categories of arenas in A

(Definition 4.1.0.3). In category theory, it is a good habit to inquire into the functoriality

of any construction. Now that we have an appropriate category of double categories,

we can ask if the construction A ↦→ ArenaA is functorial.

Proposition 4.4.1.6. The assignment A ↦→ ArenaA sending an indexed category to its

Grothendieck double construction (Definition 3.5.0.6) is functorial.

Proof. Let A : Cop → Cat and B : Dop → Cat be indexed categories, and let (𝐹, 𝐹) :

A → B be an indexed functor. We will produce a double functor(
𝐹

𝐹

)
: ArenaA → ArenaB .

Recall that the Grothendieck construction is functorial (Proposition 2.7.0.2). From

an indexed functor (𝐹, 𝐹) : A → B, we get a functor(
𝐹

𝐹

)
:

∫ 𝐶:C

A(𝐶) →
∫ 𝐷:D

B(𝐷).
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Since the horizontal category of Arena is precisely the Grothendieck construction,

we can take this to be the horizontal component of

(
𝐹
𝐹

)
: ArenaA → ArenaB. Sim-

ilarly, since the vertical category of Arena is the Grothendieck construction of the

opposite, we can take the vertical component of

(
𝐹
𝐹

)
: ArenaA → ArenaB to be(

𝐹
op

𝐹

)
:

∫ 𝐶:C
A(𝐶)op →

∫ 𝐷:D
B(𝐷)op

.

All that remains to check then is that

(
𝐹
𝐹

)
:: ArenaA → ArenaB preserves squares.

Let (
𝐴1

𝐶1

) (
𝐴2

𝐶2

)

(
𝐴3

𝐶3

) (
𝐴4

𝐶4

)

©­«
𝑔

1♭

𝑔1

ª®¬
©­«
𝑓
♯
1

𝑓1

ª®¬ ©­«
𝑓
♯
2

𝑓2

ª®¬
©­«
𝑔

2♭

𝑔2

ª®¬
be a square in ArenaA . We need to show that

(
𝐹𝐴1

𝐹𝐶1

) (
𝐹𝐴2

𝐹𝐶2

)

(
𝐹𝐴3

𝐹𝐶3

) (
𝐹𝐴4

𝐹𝐶4

)

©­«
𝐹𝑔

1♭

𝐹𝑔1

ª®¬
©­«
𝐹 𝑓

♯
1

𝐹 𝑓1

ª®¬ ©­«
𝐹 𝑓

♯
2

𝐹 𝑓2

ª®¬
©­«
𝐹𝑔

2♭

𝐹𝑔2

ª®¬
is a square in ArenaB. But this being a square means that the two following diagrams

commute:

𝐹𝐶1 𝐹𝐶2 (𝐹 𝑓1)∗𝐹𝐴3 𝐹𝐴1

𝐹𝐶3 𝐹𝐶4 (𝐹 𝑓1)∗(𝐹𝑔2)∗𝐹𝐴4 (𝐹𝑔1)∗(𝐹 𝑓2)∗𝐹𝐴4 (𝐹𝑔1)∗𝐹𝐴2

𝐹𝑔1

𝐹 𝑓1 𝐹 𝑓2

𝐹 𝑓
♯
1

(𝐹 𝑓1)∗𝐹𝑔2♭ 𝐹𝑔
1♭

𝐹𝑔2 (𝐹𝑔1)∗𝐹 𝑓 ♯
2

The left square commutes because 𝐹 is a functor, and the right square commutes

because (𝐹, 𝐹) is an indexed functor. □

4.4.2 The Vertical Slice Construction: Definition

We are now ready to define the vertical slice construction.
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Definition 4.4.2.1 (The Vertical Slice Construction). Let 𝐹 : D0 → D1 be a double

functor. The vertical slice construction of 𝐹 is the doubly indexed category

𝜎𝐹 : D1 → Cat

defined as follows:

• For 𝐷 ∈ D1, 𝜎𝐹(𝐷) is the category whose objects are pairs (𝐴, 𝑗) of an object

𝐴 ∈ D0 and a vertical map 𝑓 : 𝐹𝐴→ 𝐷. A map (𝐴1 , 𝑗1) → (𝐴2 , 𝑗2) is a pair ( 𝑓 , 𝛼)
of a horizontal 𝑓 : 𝐴1 → 𝐴2 and a square

𝐹𝐴1 𝐹𝐴2

𝛼

𝐷 𝐷

𝑗1

𝐹 𝑓

𝑗2

in D1.

• For every vertical 𝑗 : 𝐷 → 𝐷′ in D1, we associate the functor 𝜎𝐹(𝑗) : 𝜎𝐹(𝐷) →
𝜎𝐹(𝐷′) given by vertical composition with 𝑗:

𝐹𝐴1 𝐹𝐴2

𝛼

𝐷 𝐷

𝑗1

𝐹 𝑓

𝑗2 ↦→

𝐹𝐴1 𝐹𝐴2

𝛼

𝐷 𝐷

𝐷′ 𝐷′

𝑗1

𝐹 𝑓

𝑗2

𝑗 𝑗

More concisely, this is

𝜎𝐹(𝑗)( 𝑓 , 𝛼) =
(
𝑓 ,

𝛼
𝑗

)
.

• For every horizontal 𝑔 : 𝐷 → 𝐷′ in D1, we associate the profunctor 𝜎𝐹(𝑔) :

𝜎𝐹(𝐷) 𝜎𝐹(𝐷′) given by

𝐹𝐴1

𝐷

𝑗1 ,

𝐹𝐴2

𝐷′

𝑗2 ↦→


©­­­­­«
𝑓 ,

𝐹𝐴1 𝐹𝐴2

𝛼

𝐷 𝐷′

𝑗1

𝐹 𝑓

𝑗2

𝑔

ª®®®®®¬
.


We note that if 𝑔 = id𝐷 is an identity, then this reproduces the hom profunctor of

𝜎𝐹(𝐷).
• The compositor 𝜇 is given by horizontal composition:

𝜇𝑔1 ,𝑔2
(( 𝑓1 , 𝛼1), ( 𝑓2 , 𝛼2)) = ( 𝑓1 | 𝑓2 , 𝛼1 | 𝛼2).
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Let’s check now that this does indeed satisfy the laws of a doubly indexed category.

The proof is exactly as it was for Sys.

• (Vertical Functoriality) We show that 𝜎𝐹
(
𝑘1

𝑘2

)
= 𝜎𝐹(𝑘2) ◦ 𝜎𝐹(𝑘1) by vertical asso-

ciativity:

𝜎𝐹

(
𝑘1

𝑘2

)
( 𝑓 , 𝛼) =

©­­« 𝑓 ,
𝛼(
𝑘1

𝑘2

) ª®®¬
=

©­­« 𝑓 ,
(
𝛼
𝑘1

)
𝑘2

ª®®¬
= 𝜎𝐹(𝑘2) ◦ 𝜎𝐹(𝑘1)(( 𝑓 , 𝛼)).

• (Horizontal Lax Functoriality) This law follows from horizontal associativity in

D1.

𝜇(𝜇(( 𝑓1 , 𝛼1), ( 𝑓2 , 𝛼2)), ( 𝑓3 , 𝛼3)) = (( 𝑓1 | 𝑓2) | 𝑓3 , (𝛼1 | 𝛼2) | 𝛼3)
= ( 𝑓1 | ( 𝑓2 | 𝑓3), 𝛼1 | (𝛼2 | 𝛼3))
= 𝜇(( 𝑓1 , 𝛼1), 𝜇(( 𝑓2 , 𝛼2), ( 𝑓3 , 𝛼3))).

• (Naturality of Compositor) This law follows from interchange in D1.

(𝜎𝐹(𝛽1) | 𝜎𝐹(𝛽2)𝜇) (( 𝑓1 , 𝛼1), ( 𝑓2 , 𝛼2)) =
(
𝑓1 | 𝑓2 ,

𝜙

𝛼

����𝜓𝛽 )
=

(
𝑓1 | 𝑓2 ,

𝜙 | 𝜓
𝛼 | 𝛽

)
=

(
𝜇

𝜎𝐹(𝛽1 | 𝛽2)

)
(( 𝑓1 , 𝛼1), ( 𝑓2 , 𝛼2)).

We can now see that the vertical slice construction generalizes both the constructions

of SysD and Vec.

Proposition 4.4.2.2. The doubly indexed category SysD of systems in a systems theory

D = (A : Cop → Cat, 𝑇) is the vertical slice construction of the double functor ℎ𝑇 :

ℎC→ ArenaD given by considering the section 𝑇 as a double functor.

SysD = 𝜎(ℎ𝑇 : ℎC→ ArenaD).

Proof. This is a matter of checking definitions and seeing that they are precisely the

same. □

Proposition 4.4.2.3. The doubly indexed category Vec of vectors of sets is the vertical

slice construction of the inclusion 1 : 1→Matrix of the one element set into the double

category of matrices of sets.

Vec = 𝜎(1 : 1→Matrix).
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Proof. This is also a matter of checking that the definitions coincide. □

4.4.3 Natural Transformations of Double Functors

We now turn towards proving the functoriality of the vertical slice construction as a

first step in proving the change of systems theory functoriality theorem. In order to

express the functoriality of the vertical slice construction, we will first need learn about

natural transformations between double functors.

Since double categories have two sorts of maps — vertical and horizontal — there are

also two sorts of natural transformations between double functors. The two definitions

are symmetric; we may arrive at one by replacing the words “vertical” by “horizontal”

and vice-versa. We will have occasion to use both of them in this and the coming

chapters.

Definition 4.4.3.1. Let 𝐹 and 𝐺 : D → E be double functors. A vertical natural transfor-
mation 𝑣 : 𝐹⇒ 𝐺 consists of the following data:

• For every object 𝐷 ∈ D, a vertical 𝑣𝐷 : 𝐹𝐷 → 𝐺𝐷 in E.

• For every horizontal arrow 𝑓 : 𝐷 → 𝐷′ in D, a square

𝐹𝐷 𝐹𝐷′

𝑣 𝑓

𝐺𝐷 𝐺𝐷′

𝑣𝐷

𝐹 𝑓

𝑣𝐷′

𝐺 𝑓

This data must satisfy the following laws:

• (Vertical Naturality) For any vertical 𝑗 : 𝐷1 → 𝐷2, we have

𝐹𝑗

𝑣𝐷2

=
𝑣𝐷1

𝐺𝑗
.

• (Horizontal Naturality) For any horizontal 𝑓1 : 𝐷1 → 𝐷2 and 𝑓2 : 𝐷2 → 𝐷3, we

have

𝑣 𝑓1 | 𝑓2 = 𝑣 𝑓1 | 𝑣 𝑓2 .

• (Horizontal Unity) 𝑣id𝐷
= id𝑣𝐷 .

• (Square naturality) For any square

𝐷1 𝐷2

𝛼

𝐷3 𝐷4

𝑗1

𝑓1

𝑗2

𝑓2

we have

𝐹𝛼
𝑣 𝑓2

=
𝑣 𝑓1

𝐺𝛼
.
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Dually, a horizontal transformation ℎ : 𝐹⇒ 𝐺 consists of the following data:

• For every object 𝐷 ∈ D a horizontal morphism ℎ𝐷 : 𝐹𝐷 → 𝐺𝐷.

• For every vertical 𝑗 : 𝐷 → 𝐷′ in D, a square

𝐹𝐷 𝐺𝐷

ℎ 𝑗

𝐹𝐷′ 𝐺𝐷′

𝐹𝑗

ℎ𝐷

𝐺𝑗

ℎ𝐷′

This data is required to satisfy the following laws:

• (Horizontal Naturality) For horizontal 𝑓 : 𝐷1 → 𝐷2, we have

𝐹 𝑓 | 𝑣𝐷2
= 𝑣𝐷1

| 𝐺 𝑓 .

• (Vertical Naturality) For vertical 𝑗1 : 𝐷1 → 𝐷2 and 𝑗2 : 𝐷2 → 𝐷3, we have

ℎ 𝑗
1

𝑗
2

=
ℎ 𝑗1

ℎ 𝑗2
.

• (Vertical Unity) ℎid𝐷
= idℎ𝐷 .

• (Square Naturality) For any square

𝐷1 𝐷2

𝛼

𝐷3 𝐷4

𝑗1

𝑓1

𝑗2

𝑓2

we have

𝐹𝛼 | ℎ 𝑗2 = ℎ 𝑗1 | 𝐺𝛼.

Remark 4.4.3.2. Note that vertical (resp. horizontal) natural transformations are named

for the direction of arrow they assign to objects. However, a vertical transformation is

defined by its action 𝑣 𝑓 on horizontal maps 𝑓 , and dually a horizontal transformation

ℎ 𝑗 by its action on vertical maps 𝑗. Taking 𝑓 (resp. 𝑗) to be an identity id𝐷 yields the

vertical (resp. horizontal) arrow associated to the object 𝐷.

Natural transformations between double functors can be composed in the appro-

priate directions.
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Lemma 4.4.3.3. Suppose that 𝑣1 : 𝐹1 ⇒ 𝐹2 and 𝑣2 : 𝐹2 ⇒ 𝐹2 are vertical transforma-

tions. We have a vertical composite
𝑣1

𝑣2

defined by(
𝑣1

𝑣2

)
𝑓

B
(𝑣1) 𝑓
(𝑣2) 𝑓

for horizontal maps 𝑓 . Dually, for horizontal transformations ℎ1 : 𝐹1 ⇒ 𝐹2 and

ℎ2 : 𝐹2 ⇒ 𝐹3, there is a horizontal composite ℎ1 | ℎ2 defined by

(ℎ1 | ℎ2)𝑗 := (ℎ1)𝑗 | (ℎ2)𝑗

for every vertical map 𝑗.

Proof. We will prove that
𝑣1

𝑣2

is a vertical transformation; the proof that ℎ1 | ℎ2 is a

horizontal transformation is precisely dual.

• (Vertical Naturality) This follows by the same argument as for Square Naturality

below, taking 𝛼 = 𝑗 for a vertical𝑗 : 𝐷1 → 𝐷2.

• (Horizontal naturality) For horizontal maps 𝑓1 : 𝐷1 → 𝐷2 and 𝑓2 : 𝐷2 → 𝐷3, we

have

𝑣1

𝑣2 𝑓1 | 𝑓2
=
(𝑣1) 𝑓1 | 𝑓2
(𝑣2) 𝑓1 | 𝑓2

=
(𝑣1) 𝑓1 | (𝑣1) 𝑓2
(𝑣2) 𝑓1 | (𝑣2) 𝑓2

=
(𝑣1) 𝑓1
(𝑣2) 𝑓1

���� (𝑣1) 𝑓2
(𝑣2) 𝑓2

=

(
𝑣1

𝑣2

)
𝑓1

�����(𝑣1

𝑣2

)
𝑓2

.

• (Horizontal Unity) This holds by definition.

• (Square Naturality) Consider a square 𝛼 of the following signature:

𝐷1 𝐷2

𝛼

𝐷3 𝐷4

𝑗1

𝑓1

𝑗2

𝑓2

Then

𝐹1𝛼(
𝑣1

𝑣2

)
𝑓2

=

𝐹1𝛼

(𝑣1) 𝑓2
(𝑣2) 𝑓2

=

(𝑣1) 𝑓1
𝐹2𝛼

(𝑣2) 𝑓2
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=

(𝑣1) 𝑓1
(𝑣2) 𝑓1
𝐹3𝛼

=

(
𝑣1

𝑣2

)
𝑓1

𝐹3𝛼
.

□

Amongst double functors we have found two sorts of maps — vertical and horizontal

— each with their own sort of composition. This suggests that there should be a double
category of double functors D → E, just as there is a category of functors between two

categories.

Theorem 4.4.3.4. Let D and E be double categories. There is a double category

Fun(D , E) of double functors from D to E whose vertical maps are vertical trans-

formations, horizontal maps are horizontal transformations, and whose squares

𝐹1 𝐹2

𝛼

𝐹3 𝐹4

𝑣1

ℎ1

𝑣2

ℎ2

are modifications defined in the following way. To each object 𝐷 ∈ D, we have a square

𝐹1𝐷 𝐹2𝐷

𝛼𝐷

𝐹3𝐷 𝐹4𝐷

(ℎ1)𝐷

(𝑣1)𝐷

(𝑣2)𝐷

(ℎ2)𝐷

which satisfies the following laws:

• (Horizontal Coherence) For every horizontal 𝑓 : 𝐷1 → 𝐷2, we have that

(𝑣1) 𝑓 | 𝛼𝐷2
= 𝛼𝐷1

| (𝑣2) 𝑓 .

We note that this law requires us to use the vertical naturality law of 𝑣1 and 𝑣2 so

that these composites have the same signature.

• (Vertical Coherence) For every vertical 𝑗 : 𝐷1 → 𝐷2, we have that

𝛼𝐷1

(ℎ2)𝑗
=
(ℎ1)𝑗
𝛼𝐷2

.

We note that this law requires us to use the horizontal naturality law of ℎ1 and

ℎ2 so that these composites have the same signature.

The compositions 𝛼 | 𝛽 and
𝛼
𝛽 are given componentwise by 𝛼𝐷 | 𝛽𝐷 and

𝛼𝐷
𝛽𝐷

.
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Proof. Since the compositions of modifications are given componentwise, they will

satisfy associativity and interchange. We just need to show that they are well defined,

which is to say that they satisfy the laws of a modification. This is a straightforward

calculation; we’ll prove Vertical Coherence for horizontal composition since the other

cases are similar.

Let 𝛼 and 𝛽 be modifications with the following signatures:

𝐹1 𝐹2

𝛼

𝐹3 𝐹4

𝑣1

ℎ1

𝑣2

ℎ2

and

𝐹2 𝐹5

𝛽

𝐹4 𝐹6

𝑣2

ℎ3

𝑣3

ℎ4

Let 𝑗 : 𝐷1 → 𝐷2 be a vertical map in D. We calculate:

(𝛼 | 𝛽)𝐷1

(ℎ2 | ℎ4)𝑗
=

𝛼𝐷1
| 𝛽𝐷1

(ℎ2)𝑗 | (ℎ4)𝑗

=
𝛼𝐷1

(ℎ2)𝑗

���� 𝛽𝐷1

(ℎ4)𝑗

=
(ℎ1)𝑗
𝛼𝐷2

���� (ℎ3)𝑗
𝛽𝐷2

=
(ℎ1 | ℎ3)𝑗
(𝛼 | 𝛽)𝐷2

.

□

Before we move on, let’s record an important lemma relating modifications to

squares.
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Lemma 4.4.3.5. Let

𝐹1 𝐹2

𝛼

𝐹3 𝐹4

𝑣1

ℎ1

𝑣2

ℎ2

be a modification, and

𝐷1 𝐷2

𝑠

𝐷3 𝐷4

𝑗1

𝑓1

𝑗2

𝑓2

be a square in D. We then have the following four-fold equality in E:

𝛼𝐷1
(𝑣2) 𝑓1

(ℎ2)𝑗1 𝐹4𝑠

(𝑣1) 𝑓1 𝛼𝐷2

𝐹3𝑠 (ℎ2)𝑗2

(ℎ1)𝑗1 𝐹2𝑠

𝛼𝐷3
(𝑣2) 𝑓2

𝐹1𝑠 (ℎ1)𝑗2
(𝑣2) 𝑓1 𝛼𝐷4

We may refer to the single square given by any of these composites by 𝛼𝑠 .

Proof. These all follow by cycling through the square naturality laws of the transfor-

mations and the coherence laws of the modification. □

4.4.4 Vertical Slice Construction: Functoriality

In this section, we will describe the functoriality of the vertical slice construction. Since

the vertical slice construction takes a double functor 𝐹 : D0 → D1 and produces a

doubly indexed category 𝜎𝐹 : D1 → Cat, we will need to show that from a certain sort

of map between double functors we get a doubly indexed functor between the resulting

vertical slices.

First, we will describe the appropriate notion of map between double functors. This

gives us a category which we will call the category of double functors DblFun 1

Definition 4.4.4.1. The category DblFun has objects the double functor 𝐹 : D0 → D1.

A map 𝐹1 → 𝐹2 is a triple (𝑣0 , 𝑣1 , 𝑣) where 𝑣0 : D00 → D10 and 𝑣1 : D01 → D11 are

1
Though one could define other categories whose objects are double functors, this is the only such

category we will use in this book.
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double functors and 𝑣 : 𝐹2 ◦ 𝑣0 ⇒ 𝑣1 ◦ 𝐹1 is a vertical transformation.

D00 D10

D01 D11

𝐹1

𝑣0

𝐹2𝑣

𝑣1

Composition of (𝑣0 , 𝑣1 , 𝑣) : 𝐹1 → 𝐹2 with (𝑤0 , 𝑤1 , 𝑤) : 𝐹2 → 𝐹3 is given by (𝑤0 ◦𝑣0 , 𝑤1 ◦
𝑣1 , 𝑣 ∗ 𝑤) where 𝑣 ∗ 𝑤 is the vertical transformation with horizontal components given

by

(𝑣 ∗ 𝑤) 𝑓 :=
𝑤𝑣0 𝑓

𝑤1𝑣 𝑓
.

It remains to check that this does indeed yield a category. We leave this as an

exercise, since it gives some good practice in using all the various laws for double

functors and double transformations.

Exercise 4.4.4.2. Prove that the definition of DblFun does indeed yield a category.

That is:

1. Prove that (idD0
, idD1

, id𝐹) provides an identity map 𝐹→ 𝐹.

2. Prove that composition is associative. The key part will be showing that

(𝑣 ∗ 𝑤) ∗ 𝑢 = 𝑣 ∗ (𝑤 ∗ 𝑢).

♢

Next, we need to describe the appropriate category of doubly indexed categories.

There are two sorts of maps of doubly indexed categories which we will need in this

book: lax doubly indexed functors, and (taut) doubly indexed functors. In this chapter,

we will be using taut doubly indexed functors — which we may just call doubly indexed

functors — which are a special case of the more general lax variety.

Definition 4.4.4.3. Let A : D1 → Cat and B : D2 → Cat be doubly indexed categories.

A lax doubly indexed functor (𝐹0 , 𝐹) : A ⇀ B consists of:

D1

Cat

D2

𝐹0

A

𝐹

B

1. A double functor

𝐹0

: D1 → D2.
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2. For each object 𝐷 ∈ D1, a functor

𝐹𝐷 : A(𝐷) → B(𝐹0𝐷).

3. For every vertical map 𝑗 : 𝐷1 → 𝐷2 in D1, a natural transformation

A(𝐷1) B(𝐹0𝐷1)

A(𝐷2) B(𝐹0𝐷2)

A(𝑗)

𝐹𝐷1

𝐹 𝑗
B(𝐹0 𝑗)

𝐹𝐷2

We ask that 𝐹id𝐷 = id. We recall (from Proposition 3.4.3.10) that we may think of

such a natural transformation as a square

A(𝐷1) A(𝐷1)

B(𝐹0𝐷1) 𝐹 𝑗 A(𝐷2)

B(𝐹0𝐷2) B(𝐹0𝐷2)

𝐹𝐷1 A(𝑗)

B(𝐹0 𝑗) 𝐹𝐷2

4. For every horizontal map 𝑓 : 𝐷1 → 𝐷2, a square

A(𝐷1) A(𝐷2)

𝐹 𝑗

B(𝐹0𝐷1) B(𝐹0𝐷2)

A( 𝑓 )

𝐹𝐷1 𝐹𝐷2

B(𝐹0 𝑓 )

in Cat. We ask that 𝐹id𝐷 = id.

This data is required to satisfy the following laws:

• (Vertical Lax Functoriality) For composable vertical maps 𝑗 : 𝐷1 → 𝐷2 and

𝑘 : 𝐷2 → 𝐷3,

𝐹
𝑗

𝑘 =

A(𝐷1) B(𝐹0𝐷1)

A(𝐷2) B(𝐹0𝐷2)

A(𝐷3) B(𝐹0𝐷3)

A(𝑗)

𝐹𝐷1

𝐹 𝑗
B(𝐹0 𝑗)

A(𝑘)

𝐹𝐷2

B(𝐹0𝑘)𝐹𝑘

𝐹𝐷3

This is, in terms of squares in Cat:

𝐹
𝑗

𝑘
·

==
𝐹 𝑗

B(𝐹0𝑘)

����A(𝑗)𝐹𝑘
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• (Horizontal functoriality) For composable horizontal arrows 𝑓 : 𝐷1 → 𝐷2 and

𝑔 : 𝐷2 → 𝐷3,

𝜇A
𝑓 ,𝑔

𝐹 𝑓 |𝑔
=
𝐹 𝑓 | 𝐹𝑔

𝜇B

𝐹0 𝑓 ,𝐹0𝑔

.

• (Functorial Interchange) For any square

𝐷1 𝐷2

𝛼

𝐷3 𝐷4

𝑓

𝑗 𝑘

𝑔

in D1, we have that

𝐹 𝑗
���� A(𝛼)𝐹𝑔

·
==

𝐹 𝑓

B(𝐹0𝛼)

���� 𝐹𝑘 .
Note the use of “

·
==” here; the two sides of this equation have different, but canon-

ically isomorphic boundary. What we are asking is that when these boundaries

are made the same by composing with canonical isomorphisms in any way, they

will become equal

A lax doubly indexed functor is taut — which we will in refer to just as a doubly

indexed functor — if the natural transformations 𝐹 𝑗 associated to vertical maps 𝑗 :

𝐷1 → 𝐷2 in D1 are natural isomorphisms.

The definition of doubly indexed functor involves a lot of data, but this is because it

is a big collection of functoriality results.

Before getting to our functoriality theorem, we need to compose lax doubly indexed

functors.

Definition 4.4.4.4. If (𝐹0 , 𝐹) : A → B and (𝐺0 , 𝐺) : B → C are two doubly indexed

functors, we define their composite

(𝐹0 , 𝐹) # (𝐺0 , 𝐺) B (𝐹0 # 𝐺0 , 𝐹 # 𝐺)

where 𝐹 # 𝐺 is defined by:

• We define (𝐹 # 𝐺)𝐷 B 𝐹𝐷 # 𝐺𝐹0𝐷
. We note that in Cat, where functors are the

vertical maps, this can be written

(𝐹 # 𝐺)𝐷 =
𝐹𝐷

𝐺𝐹
0𝐷
.
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• For a vertical 𝑗 : 𝐷1 → 𝐷2, we define

A(𝐷1) C(𝐺0𝐹0𝐷1)

A(𝐷2) C(𝐺0𝐹0𝐷2)

A(𝑗)

(𝐹#𝐺)𝐷1

(𝐹#𝐺)𝑗
C(𝐺0𝐹0 𝑗)

(𝐹#𝐺)𝐷2

B

A(𝐷1) B(𝐹0𝐷1) C(𝐺0𝐹0𝐷1)

A(𝐷2) B(𝐹0𝐷2) C(𝐺0𝐹0𝐷2)

A(𝑗)

𝐹𝐷1

𝐹 𝑗
B(𝐹0 𝑗)

𝐺𝐹
0𝐷

1

C(𝐺0𝐹0 𝑗)𝐺𝐹
0 𝑗

𝐹𝐷2 𝐺𝐹
0𝐷

2

We note that by Lemma 3.4.3.12, this corresponds to the composite of squares:

(𝐹 # 𝐺)𝑗 ·== 𝐹𝐷1

𝐺𝐹
0 𝑗

���� 𝐹 𝑗

𝐺𝐹
0𝐷2

• For a horizontal 𝑓 : 𝐷1 → 𝐷2, we define

(𝐹 # 𝐺) 𝑓 B 𝐹 𝑓

𝐺𝐹
0 𝑓
.

We refer to the category of doubly indexed categories and lax doubly indexed

functors by LaxDblIx and the category of doubly indexed categories and (taut) doubly

indexed functors by DblIx.

Let’s show that this composition operation does indeed produce a lax doubly in-

dexed functor.

• (Vertical Lax Functoriality) For composable vertical maps 𝑗 : 𝐷1 → 𝐷2 and

𝑘 : 𝐷2 → 𝐷3, consider the following diagram:

A(𝐷1) B(𝐹0𝐷1) C(𝐺0𝐹0𝐷1)

A(𝐷2) B(𝐹0𝐷2) C(𝐺0𝐹0𝐷2)

A(𝐷3) B(𝐹0𝐷3) B(𝐺0𝐹0𝐷3)

A(𝑗)

𝐹𝐷1

𝐹 𝑗
B(𝐹0 𝑗)

𝐺𝐹
0𝐷

1

C(𝐺0𝐹0 𝑗)𝐺𝐹
0 𝑗

A(𝑘)

𝐹𝐷2

B(𝐹0𝑘)𝐹𝑘

𝐺𝐹
0𝐷

2

𝐺𝐹
0𝑘

C(𝐺0𝐹0𝑘)

𝐹𝐷3 𝐺𝐹
0𝐷

2

There is a single natural transformation given as the composite of this “pasting

diagram”. But, if we read it by composing vertically first, and then composing

horizontally second, we arive at (𝐹 # 𝐺)
𝑗

𝑘 , while if we read it by composing

horizontally first and then vertically second, we get the composite of (𝐹 #𝐺)𝑗 and

(𝐹 # 𝐺)𝑘 as desired.

• (Horizontal Functoriality) Let 𝑓 : 𝐷1 → 𝐷2 and 𝑔 : 𝐷2 → 𝐷3 be horizontal maps.

We then calculate:

𝜇A
𝑓 ,𝑔

(𝐹 # 𝐺) 𝑓 |𝑔
=

𝜇A
𝑓 ,𝑔

𝐹 𝑓 |𝑔

𝐺𝐹
0( 𝑓 |𝑔)
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=

𝐹 𝑓 | 𝐹𝑔
𝜇B

𝐹0 𝑓 ,𝐹0𝑔

𝐺𝐹
0 𝑓 |𝐹0𝑔

=

𝐹 𝑓 | 𝐹𝑔
𝐺𝐹

0 𝑓 | 𝐺𝐹0𝑔

𝜇C

𝐺0𝐹0 𝑓 ,𝐺0𝐹0𝑔

=

𝐹 𝑓

𝐺𝐹
0 𝑓

��� 𝐹𝑔

𝐺𝐹
0𝑔

𝜇C

𝐺0𝐹0 𝑓 ,𝐺0𝐹0𝑔

=
(𝐹 # 𝐺) 𝑓 | (𝐹 # 𝐺)𝑔

𝜇C

𝐺0𝐹0 𝑓 ,𝐺0𝐹0𝑔

.

• (Functorial Interchange) Consider a square

𝐷1 𝐷2

𝛼

𝐷3 𝐷4

𝑓

𝑗 𝑘

𝑔

We may then calculate:

• • • •

• • • •

• • • •

• • • •

𝐹𝐷 A(𝛼)
𝐹 𝑗

𝐹𝑔

𝐺𝐹
0 𝑗

𝐺𝐹
0𝐷3 𝐺𝐹

0𝑔

·
==

• • • •

• • •

• • • •

• • • •

𝐹𝐷 𝐹 𝑓

B(𝐹0𝛼)
𝐹𝑘

𝐺𝐹
0 𝑗

𝐺𝐹
0𝑔 𝐺𝐹

0𝐷3

·
==

• • • •

• • •

• • • •

• • • •

𝐹𝐷 𝐹 𝑓

𝐺𝐹
0 𝑓

𝐹𝑘

C(𝐺0𝐹0𝛼)
𝐺𝐹

0𝑘

𝐺𝐹
0𝐷3

Now that we have a category of doubly indexed categories, we can state the functo-

riality result:

Theorem 4.4.4.5. The vertical slice construction (Definition 4.4.2.1) gives a functor

𝜎 : DblFun→ DblIx.
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We will spend the rest of this section proving this theorem.

Proposition 4.4.4.6. Let (𝑣0 , 𝑣1 , 𝑣) : 𝐹1 → 𝐹2 be a map in DblFun. Then we have a

doubly indexed functor

D01

Cat

D11

𝑣1

𝜎𝐹1

𝜎𝑣

𝜎𝐹2

Proof. We define 𝜎𝑣 as follows:

• We have 𝜎𝑣𝐷 : 𝜎𝐹1(𝐷) → 𝜎𝐹2(𝑣1𝐷) given by the following action on maps:

𝐹1𝐴1 𝐹1𝐴2

𝛼

𝐷 𝐷

𝑗1

𝐹1 𝑓

𝑗2 ↦→

𝐹2𝑣0𝐴1 𝐹2𝑣0𝐴2

𝑣 𝑓

𝑣1𝐹1𝐴1 𝐹𝐴2

𝑣1𝛼

𝑣1𝐷 𝑣1𝐷

𝑣𝐴
1

𝐹2𝑣0 𝑓

𝑣𝐴
2

𝑣1 𝑗1

𝑣1𝐹1 𝑓

𝑣1 𝑗2

In short:

𝜎𝑣𝐷( 𝑓 , 𝛼) B
(
𝑣0 𝑓 ,

𝑣 𝑓

𝑣1𝛼

)
.

• For any vertical map 𝑗 : 𝐷1 → 𝐷2 in D01, we will show that

𝜎𝐹2(𝑣1 𝑗) ◦ 𝜎𝑣𝐷1 = 𝜎𝑣𝐷2 ◦ 𝜎𝐹1(𝑗)

so that we may take 𝜎𝑣 𝑗 to be the identity natural transformation.

𝜎𝐹2(𝑣1 𝑗) ◦ 𝜎𝑣𝐷1( 𝑓 , 𝛼) = 𝜎𝐹2(𝑣1 𝑗)
(
𝑣0 𝑓 ,

𝑣 𝑓

𝑣1𝛼

)
=

©­­«𝑣0 𝑓 ,

𝑣 𝑓

𝑣1𝛼

𝑣1 𝑗

ª®®¬
=

©­­«𝑣0 𝑓 ,
𝑣 𝑓

𝑣1

(
𝛼
𝑗

) ª®®¬
= 𝜎𝑣𝐷2

(
𝑓 ,

𝛼
𝑗

)
= 𝜎𝑣𝐷2 ◦ 𝜎𝐹1(𝑗)( 𝑓 , 𝛼)
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• For a horizontal map 𝜑 : 𝐷1 → 𝐷2, we give the square

𝜎𝐹1(𝐷1) 𝜎𝐹1(𝐷2)

𝜎𝑣𝜑

𝜎𝐹2(𝑣1𝐷2) 𝜎𝐹2(𝑣1𝐷2)

𝜎𝐹1( 𝑓 )

𝜎𝑣𝐷1 𝜎𝑣𝐷2

𝜎𝐹2(𝑣1 𝑓 )

defined by

𝐹1𝐴1 𝐹1𝐴2

𝛼

𝐷 𝐷

𝑗1

𝐹1 𝑓

𝑗2

𝜑

↦→

𝐹2𝑣0𝐴1 𝐹2𝑣0𝐴2

𝑣 𝑓

𝑣1𝐹1𝐴1 𝐹𝐴2

𝑣1𝛼

𝑣1𝐷 𝑣1𝐷

𝑣𝐴
1

𝐹2𝑣0 𝑓

𝑣𝐴
2

𝑣1 𝑗1

𝑣1𝐹1 𝑓

𝑣1 𝑗2

𝑣1𝜑

In short:

𝜎𝑣𝜑( 𝑓 , 𝛼) B
(
𝑣0 𝑓 ,

𝑣 𝑓

𝑣1𝛼

)
.

We will show that this data satisfies the laws of a doubly indexed functor.

• (Vertical Lax Functoriality)As we’ve taken the natural transformations 𝜎𝑣 𝑗 to be

identities, they are functorial since composites of identities are identities.

• (Horizontal functoriality) For composable horizontal maps 𝜑1 : 𝐷1 → 𝐷2 and

𝜑2 : 𝐷2 → 𝐷3, we may calculate:(
𝜇𝜎𝐹1

𝜑1 ,𝜑2

𝜎𝑣𝜑1 |𝜑2

)
(( 𝑓1 , 𝛼1), ( 𝑓2 , 𝛼2)) =

(
𝑣1( 𝑓1 | 𝑓2),

𝑣 𝑓1 | 𝑓2
𝑣1(𝛼1 | 𝛼2)

)
=

(
𝑣1 𝑓1 | 𝑣1 𝑓2 ,

𝑣 𝑓1 | 𝑣 𝑓2
𝑣1𝛼1 | 𝑣1𝛼2

)
=

(
𝑣1 𝑓1 | 𝑣1 𝑓2 ,

𝑣 𝑓1

𝑣1𝛼1

���� 𝑣 𝑓2𝑣1𝛼2

)
=

(
𝑣𝜑1 | 𝑣𝜑2

𝜇𝜎𝐹2

𝑣1𝜑1 ,𝑣2𝜑2

)
(( 𝑓1 , 𝛼1), ( 𝑓2 , 𝛼2)).

• (Functorial Interchange) Consider a square

𝐷1 𝐷2

𝛽

𝐷3 𝐷4

𝜑1

𝑗1 𝑓2

𝜑2
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Since 𝜎𝑣 𝑗1 and 𝜎𝑣 𝑗2 are identities, we just need to show that

𝜎𝐹1(𝛽)
𝜎𝑣𝜑2

=
𝜎𝑣𝜑1

𝜎𝐹2(𝑣1𝛽)
.

To that end, we calculate:(
𝜎𝐹1(𝛽)
𝜎𝑣𝜑2

)
( 𝑓 , 𝛼) = 𝜎𝑣𝜑2

(
𝑓 ,

𝛼
𝛽

)
=

©­­«𝑣1 𝑓 ,
𝑣 𝑓

𝑣1

(
𝛼
𝛽

) ª®®¬
=

©­­«𝑣1 𝑓 ,

𝑣 𝑓

𝑣1𝛼

𝑣1𝛽

ª®®¬
= 𝜎𝐹2(𝑣1𝛽)

(
𝑣1 𝑓 ,

𝑣 𝑓

𝑣1𝛼

)
=

(
𝜎𝑣𝜑1

𝐹2(𝑣1𝛽)

)
( 𝑓 , 𝛼).

□

We now finish the proof of Theorem 4.4.4.5.

Lemma 4.4.4.7. The assignment (𝑣0 , 𝑣1 , 𝑣) ↦→ (𝑣1 , 𝜎𝑣) defined in Proposition 4.4.4.6 is

functorial.

Proof. Let (𝑣0 , 𝑣1 , 𝑣) : 𝐹1 → 𝐹2 and (𝑤0 , 𝑤1 , 𝑤) : 𝐹2 → 𝐹3 be maps in DblFun. We will

show that

(𝑣1
# 𝑤1 , 𝜎(𝑣 ∗ 𝑤)) = (𝑣1 , 𝜎𝑣) # (𝑤1 , 𝜎𝑤).

The first components of these pairs are equal by definition, so we just need to show

that 𝜎(𝑣 ∗ 𝑤) = 𝜎𝑣 # 𝜎𝑤.

• This calculation is the same as for a general horizontal.

• For a vertical 𝑗 : 𝐷1 → 𝐷2, we calculate, we note that both sides are the same

identity natural transformation.

• For a horizontal 𝜑 : 𝐷1 → 𝐷2, we calculate:

𝜎(𝑣 ∗ 𝑤)𝜑( 𝑓 , 𝛼) B
(
𝑤0𝑣0 𝑓 ,

(𝑣 ∗ 𝑤) 𝑓
𝑤1𝑣1𝛼

)
=

©­­«𝑤0𝑣0 𝑓 ,

𝑤𝑣0 𝑓

𝑤1𝑣 𝑓

𝑤1𝑣1𝛼

ª®®¬
=

©­­«𝑤0𝑣0 𝑓 ,
𝑤𝑣0 𝑓

𝑤1

(
𝑣 𝑓
𝑣1𝛼

) ª®®¬
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= 𝜎𝑤𝑣1𝜑

(
𝑣0 𝑓 ,

𝑣 𝑓

𝑣1𝛼

)
= (𝜎𝑣𝜑) # (𝜎𝑤𝑣1𝜑)( 𝑓 , 𝛼).

□

4.5 Change of systems theory

We have learned about a variety of systems theory in this book:

• There are the deterministic systems theory (Definition 3.5.1.1)

(Ctx− : Cop → Cat, 𝜙 ↦→ 𝜙 ◦ 𝜋2)

which may be defined for any cartesian category C. While we have focused so

far on the case C = Set, many other cartesian categories are of interest in the

study of deterministic dynamical systems. For example, in ergodic theory we

most often use the category of measureable spaces and measurable functions.2

We often assume the dynamics of the systems are not arbitary set maps, but are

furthermore continuous or differentiable; this means working in the cartesian

categories of topological spaces or differentiable manifolds.

• There are also the differential systems theories (Definitions 3.5.2.1 and 3.5.2.23)

where the tangent bundle plays an important role. There are also non-standard

differential systems theories arising from cartesian differential categories [CC17]

and tangent categories with display maps [CC14].

• There are the non-deterministic systems theories for any commutative monad

𝑀 on a cartesian category C. As we saw in Chapter 2, by varying the monad

𝑀 we can achieve a huge variety of flavors of non-determinism. This includes

possibilistic and stochastic non-determinism, but also other variants like systems

with cost-sensitive transitions and (Definition 2.3.0.7).

These are just large classes of systems theories that have been easy to describe in

generality. Different particular situations will require different particular systems

theories. For example, we may decide to restrict the sorts of maps appearing in our

systems theories by changing the base C as in Section 3.6. There may also be systems

theories constructed by hand for particular purposes, such as ergodic theory.

These systems theories are not isolated from each other. We have seen already in

Section 3.6 that some systems theories may be formed by restricting others. There are

also some apparent inclusions of systems theories that are not explained by restriction;

for example, the Euclidean differential systems theories is a special case of the general

differential systems theories. We should be able to think of Euclidean differential

systems and general differential systems without too much hassle, and we should

2
We most often consider maps which preserve a specific measure on a space as well, but the category

of such measure preserving maps is not cartesian. Often one needs to go and twiddle these general

definitions of systems theory in particular cases to suit the particular needs of a subject.
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be able to apply theorems that pertain to general differential systems to Euclidean

ones. Another example of inclusion of systems theories is of deterministic systems into

non-deterministic systems of any flavor.

There are also more drastic ways to change systems theories. Any map of commu-

tative monads 𝜙 : 𝑀 → 𝑁 gives us a way of changing an 𝑀-system into an 𝑁-system,

changing the flavor of non-determinism. We may also approximate a differential system

by a deterministic system.

These are all ways of changing our systems theories, and it is these changes of systems

theories that we will attend to in this section. We will begin by defining a change of
systems theory, which will give us a category of systems theories. We will then show

that forming the doubly indexed category of systems Sys(T) is functorial in the systems

theories T.

4.5.1 Definition

Let’s recall the informal and formal definitions of theories of dynamical systems.

The informal definition is that a systems theory is a way to answer a series of

questions about what it means to be a dynamical system.

Informal Definition 4.5.1.1. A theory of dynamical systems is a particular way to

answer the following questions about what it means to be a dynamical system:

1. What does it mean to be a state?

2. How should the output vary with the state — discretely, continuously, linearly?

3. Can the kinds of input a system takes in depend on what it’s putting out, and

how do they depend on it?

4. What sorts of changes are possible in a given state?

5. What does it mean for states to change.

6. How should the way the state changes vary with the input?

This informal definition is captured by the sparse, formal definition that a systems

theory is a pair consisting of an indexed categoryA : Cop → Cat together with a section

𝑇. The various questions correspond to the choices one can make when defining such

a pair.

To change a systems theory, then, means to change our answers to these questions.

We want to enact this change by some formulated process. For example, if what it

means to be a state is a to be a vector in Euclidean space, and we would like to change

this to instead answer that to be a state means to be an element of an abstract set, then

we want a way of taking Euclidean spaces and producing an abstract set.

Now, we can’t just fiddle arbitrarily with the answers to our questions; they all have

to hang together in a coherent way. The formal definition can guide us to what sort of

changes we can make that cohere in just this way. For example, we can change what it

means to be a state, how the output varies with the state, and the way the inputs vary

by changing the indexed category A.
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Suppose that (A , 𝑇1) and (B, 𝑇2) are dynamical system systems theories. If we have

an indexed functor (Definition 2.7.0.1) (𝐹, 𝐹) : A → B between indexed categories,

then from a dynamical system

(
updateS
exposeS

)
:

(
𝑇1StateS
StateS

)
⇆

(
InS
OutS

)
we can get a lens(

𝐹updateS

𝐹exposeS

)
:

(
𝐹𝑇1StateS

𝐹StateS

)
⇆

(
𝐹InS

𝐹OutS

)
That is, we have changed what it means to be a state (𝐹StateS), how the output varies

with state (𝐹exposeS), and how the inputs vary with output (𝐹InS). This is not quite

a dynamical system, however, since since its domain is not

(
𝑇2𝐹StateS
𝐹StateS

)
. In order for us

to get a (B, 𝑇2)-system, we need to say how to change the what it means for a state to

change.

The most direct way to produce a (B, 𝑇2)-system would be to compose with a map

𝜙 : 𝐹𝑇1StateS → 𝑇2𝐹StateS which tells us how to take a 𝑇1 change (re-interpreted

already by 𝐹), and get a 𝑇2 change (for the re-interpretation of state by 𝐹). Indeed, if

we considered this map 𝜙 as a lens

(
𝜙
id

)
:

(
𝑇2𝐹StateS
𝐹StateS

)
⇆

(
𝐹𝑇1StateS
𝐹StateS

)
, we may form the

composite (
𝐹updateS

𝐹exposeS

)
#

(
𝜙

id

)
:

(
𝑇2𝐹StateS

𝐹StateS

)
⇆

(
𝐹InS

𝐹OutS

)
.

This is a (B, 𝑇2)-system, and this process is how we may use a change of systems theories

to turn (A , 𝑇1)-systems into (B, 𝑇2)-systems.

We therefore arrive at the following formal defintion of change of systems the-

ory.

Definition 4.5.1.2. Let (A : C → Cat, 𝑇1) and (B : D → Cat, 𝑇2) be theories of dy-

namical systems. A change of systems theories ((𝐹, 𝐹), 𝜙) : (A , 𝑇1) → (B, 𝑇2) consists

of:

• An indexed functor (𝐹, 𝐹) : A → B.

• A transformation of sections 𝜙 : 𝐹𝑇1 → 𝑇2𝐹, which consists of a family of maps

𝜙𝐶 : 𝐹𝑇1𝐶 → 𝑇2𝐹𝐶 for each 𝐶 in 𝐶, satisfying the following naturality condition:

– For any 𝑓 : 𝐶 → 𝐶′, we have that the following square commutes in B(𝐹𝐶):

𝐹𝑇1𝐶 𝑇2𝐹𝐶

𝐹 𝑓 ∗𝑇1𝐶
′ (𝐹 𝑓 )∗𝑇2𝐹𝐶

′

𝐹𝑇1 𝑓

𝜙𝐶

𝑇2𝐹 𝑓

(𝐹 𝑓 )∗𝜙𝐶′

(4.5)

We can package the transformation of sections into a natural transformation, which

will make it easier to work with theoretically.
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Proposition 4.5.1.3. The data of a transformation of sections as in Definition 4.5.1.2 is

equivalent to the data of a natural transformation

(
𝜙
id

)
:

(
𝐹
𝐹

)
◦ 𝑇1 ⇒

(
𝑇2(−)
(−)

)
◦ 𝐹 which

acts as the identity on 𝐹 on its bottom component. We can express this condition with

the following equation on diagrams of natural transformations:

C D

∫ 𝐶:C
A(𝐶)

∫ 𝐷:D
B(𝐷)

C D

©­«
𝑇1(−)

(−)
ª®¬

𝐹

©­«
𝑇2(−)

(−)
ª®¬

©­«
𝐹

𝐹

ª®¬

©­«
𝜙

id

ª®¬

𝜋 𝜋

𝐹

=

C D

C D

𝐹

𝐹

id𝐹

Remark 4.5.1.4. We note that the components of the natural transformation

(
𝜙
id

)
here

are charts and not lenses. We will, however, exploit the duality between lenses and

charts whose lower component are identities.

Proof. That the transformation

(
𝜙
id

)
acts as the identity on 𝐹means that it is determined

by its top map 𝜙. We can then see that the naturality square for 𝜙 is precisely the square

given in Definition 4.5.1.2. □

Every restriction (from Section 3.6) is a change of systems theory.

Proposition 4.5.1.5. Let T = (A : Cop → Cat, 𝑇) be a systems theory, and let 𝐹 : D → C

be a functor. Then there is a change of systems theory ((𝐹, id), id) : T|𝐹 → T from the

restriction T𝐹 = (A ◦ 𝐹op , 𝑇 ◦ 𝐹) (Definition 3.6.0.1) of T by 𝐹 to T.

Proof. By definition, (𝐹, id) : A → (A ◦ 𝐹op) is an indexed functor. Since, by Proposi-

tion 4.5.1.3, the data of a transformation of sections is the same as a natural transfor-

mation of a certain sort, we may take that transformation to be the identity. □

There are, however, more interesting changes of systems theory. For example, every

morphism of commutative monads gives rise to a change of systems theory.

Proposition 4.5.1.6. Let 𝜙 : 𝑀 → 𝑁 be a morphism of commutative monads on a

cartesian category C. Then there is a change of systems theory given by

((id, 𝜙∗), id) : Nondet𝑀 → Nondet𝑁 .

Proof. We constructed the indexed functor (id, 𝜙∗) : Ctx𝑀− → Ctx𝑁− in Proposition 2.7.0.3.

It remains to show that the following square of functors commutes, so that we may
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take the transformation of sections to be the identity:

C C

∫ 𝐶:C Ctx𝑀
𝐶

∫ 𝐶:C Ctx𝑁
𝐶

𝑇𝑀 𝑇𝑁

(
𝜙∗
id

)
Let 𝑓 : 𝐶′ → 𝐶 be a map in C. Then 𝑇𝑀 𝑓 is 𝜋2

# 𝑓 # 𝜂𝑀 : 𝐶′ × 𝐶′ → 𝑀𝐶 and 𝑇𝑁 𝑓 is

𝜋2
# 𝑓 # 𝜂𝑁 : 𝐶′ × 𝐶′ → 𝑁𝐶. Now, 𝜙∗𝑇𝑀 𝑓 is 𝜋2

# 𝑓 # 𝜂𝑀 # 𝜙𝐶 , but by the unit law for

morphisms of commutative monads, 𝜂𝑀 # 𝜙𝐶 = 𝜂𝑁 . So the square commutes and we

can take the transformation of sections to be the identity. □

Example 4.5.1.7. For any commutative monad 𝑀 : C → C, there is a unique commu-

tative monad map from the identity monad idC. Therefore, Proposition 4.5.1.6 gives

us a change of systems theory DetC → Nondet𝑀 which lets us interpret deterministic

systems as special cases of non-deterministic systems.

Example 4.5.1.8. Proposition 2.5.0.3 constructs a commutative monad morphism 𝜙 :

D→ P sending a probability distribution to the set of elements with non-zero proba-

bility. Therefore, Proposition 4.5.1.6 gives us a change of systems theory NondetD →
NondetP which reinterprets a probabilistic system as a possibilistic one where the state

𝑠′ is possibly the udpate 𝜙∗updateS(𝑠, 𝑖) of state 𝑠 with input 𝑖 just when just when the

probability updateS(𝑠, 𝑖)(𝑠′) that 𝑠 will transition to 𝑠′ on input 𝑖 is non-zero.

We may also describe changes of systems theories between various sorts of deter-

ministic systems theory.

Proposition 4.5.1.9. Let 𝐹 : C→ D be a cartesian functor between cartesian categories.

Then there is a change of systems theory

((𝐹, 𝐹), id) : DetC → DetD

from the deterministic systems theoy in C to the cartesian systems theory in D.

Proof. We need to construct the indexed functor (𝐹, 𝐹), and then prove that the square

C C

∫ 𝐶:C Ctx𝐶
∫ 𝐷:D Ctx𝐷

𝐹

𝑇C 𝑇D

(
𝐹
𝐹

)
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commutes, so that we may take the transformation of sections to be the identity.

We begin first by constructing 𝐹. We note that since 𝐹 is cartesian, it extends to a

functor

𝐹𝐶 : Ctx𝐶 → Ctx𝐹𝐶
by sending 𝑓 : 𝐶 ×𝑋 → 𝑌 to 𝐹 𝑓 : 𝐹𝐶 × 𝐹𝑋 → 𝐹𝑌. It is routine to check that this makes

(𝐹, 𝐹) into an indexed functor. In particular, for a map 𝑟 : 𝐶′→ 𝐶 in C, we see that

𝐹𝐶′(𝑟∗ 𝑓 ) = 𝐹((𝑟 × id) # 𝑓 ) = 𝐹((𝑟 × id) # 𝑓 ) = (𝐹𝑟 × id) # 𝐹 𝑓 = (𝐹𝑟)∗𝐹( 𝑓 )

Next we check that the square commutes. Let 𝑓 : 𝐶′ → 𝐶 be a map in C. Then

𝑇D ◦ 𝐹( 𝑓 ) =
(
𝜋2

#𝐹 𝑓
𝐹 𝑓

)
, while

(
𝐹
𝐹

) (
𝑇 𝑓
𝑓

)
=

(
𝐹(𝜋2

# 𝑓 )
𝐹 𝑓

)
. But since 𝐹 is cartesian, 𝐹(𝜋2) = 𝜋2,

so these are equal. □

Example 4.5.1.10. Proposition 4.5.1.9 gives us a number of trivial ways to change the

flavor of our deterministic systems.

For example, it is obvious that any deterministic dynamical system whose update

and expose maps are continuous gives rise to a deterministic dynamcial system without

the constraint of continuity, simply by forgetting that the maps are continuous. We

formalize this observation by applying Proposition 4.5.1.9 to the forgetful functor U :

Top→ Set which sends a topological space to its underlying set of points.

Similarly, any deterministic dynamical system gives rise to a continuous determin-

istic dynamical system if we equip all sets involved with the discrete topology. This

is formalized by applying Proposition 4.5.1.9 to the functor disc : Set → Top which

equips a set with the discrete topology.

The most interesting examples of changes of systems theory are the ones which move

between different sorts of systems theory, such as from differential to deterministic. An

example of this is the Euler approximation, which takes a Eulidean differential system

to a deterministic system.

Let’s take a minute to recall the Euler method. If

(
𝑢
𝑟

)
:

(
R𝑛

R𝑛

)
⇆

(
R𝑘

R𝑚

)
is a differential

system representing the differential equation

𝑑𝑠

𝑑𝑡
= 𝑢(𝑠, 𝑖),

then for a sufficiently small 𝜀 > 0, the state at time 𝑡 + 𝜀 will be roughly

𝑠(𝑡 + 𝜀) ≈ 𝑠(𝑡) + 𝜀 · 𝑢(𝑠(𝑡), 𝑖(𝑡)).

Choosing a specific 𝜀 as a time increment, we can define a discrete time, deterministic

system by

E𝜀𝑢(𝑠, 𝑖) = 𝑠 + 𝜀 · 𝑢(𝑠, 𝑖). (4.6)

This simple method of approximating the solution of a differential equation is called

the Euler method. We can see the Euler method as a change of systems theory from a

differential systems theory to a deterministic systems theory.
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Proposition 4.5.1.11. For any 𝜀 > 0, the Euler method gives rise to a change of systems

theory

E𝜀 : Euc|Aff → DetEuc.

This is given by

((𝜄, 𝜄), 𝜙) : (Ctx|Aff : Affop → Cat, 𝑇) → (Ctx|Euc : Eucop → Cat,R𝑛 ↦→ R𝑛)

where 𝜄 : Aff→ Euc is the inclusion and 𝜙 : R𝑛 × R𝑛 → R𝑛 is defined by

𝜙(𝑠, 𝑣) = 𝑠 + 𝜀 · 𝑣.

Proof. We note, first of all, that composing with 𝜙 gives us the correct formula for the

Euler approximation. Explicitly,

𝜙 ◦ 𝑢(𝑠, 𝑖) = 𝑠 + 𝜀 · 𝑢(𝑠, 𝑖),

which was the definition for E𝜀𝑢 in Eq. (4.6).

All that we need to show is that 𝜙 is a transformation of sections. This means that

the following square commutes for any affine 𝑓 : R𝑛 → R𝑚 :

(
R𝑛

R𝑛

) (
R𝑚

R𝑚

)

(
R𝑛

R𝑛

) (
R𝑚

R𝑚

)

©­«
𝜋2

# 𝑓

𝑓

ª®¬
©­«
𝜙

id

ª®¬ ©­«
𝜙

id

ª®¬
©­«
𝑇 𝑓

𝑓

ª®¬
The bottom component of this square commutes trivially. The top component comes

down to the equation

𝑓 (𝑠 + 𝜀 · 𝑣) = 𝑓 (𝑠) + 𝜀𝑇 𝑓 (𝑠, 𝑣) (4.7)

which says that incrementing 𝑠 by 𝜀 in the 𝑣 direction in 𝑓 is the same as incrementing

𝑓 (𝑠) by the 𝜀 times the directional derivative of 𝑓 in the 𝑣 direction. This is true for

affine functions; even more, it characterizes affine functions, so that we see that we

must assume that 𝑓 is affine for this square to commute. □

Remark 4.5.1.12. It would be very interesting to have a theory which allowed us to speak

of “approximate” changes of systems theory. If we plug a function 𝑓 : R𝑛 → R𝑚 into

the above formulas for the Euler method, then we find that Eq. (4.7) only holds up to

𝑂(𝜀2). For affine functions, this means that it does hold, which is why we restrict to

affine functions. But it would be interesting to have a theory which could account for
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how these approximate equalities affected the various compositionality results all the

way down.

In the upcoming Section 4.5.2, we will see what knowing that the Euler method is

a change of systems theory lets us conclude about the behaviors and compositionality

of Euler method approximations.

Considering systems theories together with their changes gives us a category

Theory.

Definition 4.5.1.13. The category Theory has as objects the theories of dynamical

systems and as morphisms the changes of theories.

If ((𝐹1 , 𝐹1), 𝜙1) : (A1 , 𝑇1) → (A2 , 𝑇2) and ((𝐹2 , 𝐹2), 𝜙2) : (A2 , 𝑇2) → (A3 , 𝑇3) are

changes of systems theories, then their composite is defined to be

((𝐹1 , 𝐹1), 𝜙1) # ((𝐹2 , 𝐹2), 𝜙2) B ((𝐹1 , 𝐹1) # (𝐹2 , 𝐹2), 𝜙1 ∗ 𝜙2)

where 𝜙1 ∗ 𝜙2 is the transformation of sections given by

(𝜙1 ∗ 𝜙2)𝐶 B 𝐹2𝐹1𝑇1𝐶
𝐹2𝜙1−−−→ 𝐹2𝑇2𝐹1𝐶

(𝜙2)𝐹
1
𝐶

−−−−−→ 𝑇3𝐹2𝐹1𝐶.

In terms of natural transformations (see Proposition 4.5.1.3), this is the diagram

C1 C2 C3

∫ 𝐶:C1

A1(𝐶)
∫ 𝐶:C2

A2(𝐶)
∫ 𝐶:C3

A3(𝐶)

𝐹1

𝑇1

𝐹2

𝑇2 𝑇3

©­«
𝐹1

𝐹1

ª®¬

(
𝜙1

id

)

©­«
𝐹2

𝐹2

ª®¬

(
𝜙2

id

)

4.5.2 Functoriality

We use changes of systems theories to turn a system of one sort into a system of

another sort. We sketched how this process goes above, but for good measure let’s

revisit it.

Definition 4.5.2.1. Let F = ((𝐹, 𝐹), 𝜙) : (A , 𝑇1) → (B, 𝑇2) be a change of systems theory,

and let

S =

(
updateS

exposeS

)
:

(
𝑇1StateS

StateS

)
⇆

(
InS

OutS

)
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be a (A , 𝑇1)-system. Then we have a (B, 𝑇2)-system FS defined to be the composite(
𝜙

id

)
#

(
𝐹updateS

𝐹exposeS

)
:

(
𝑇2𝐹StateS

𝐹StateS

)
⇆

(
𝐹InS

𝐹OutS

)
.

Explicitly, this system has update map 𝐹updateS
# 𝜙 and expose map 𝐹exposeS.

The goal of this section will be to provide a number of compositionality results

concerning how changing the theory of a system relates to wiring systems together

and to behaviors. Specifically, we will prove the following theorem:

Theorem 4.5.2.2. There is a functor

Sys : Theory→ DblIx

sending a theory of dynamical systems T to the doubly indexed category SysT (Defi-

nition 4.3.0.2) of systems in it.

This functor sends a change of systems theory F : T1 → T2 to the doubly indexed

functor Sys(T1) → Sys(T2) which sends a T1-system S to the T2-system FS from

Definition 4.5.2.1.

We will prove this theorem using the vertical slice construction. Recall that the

doubly indexed category Sys(T) is the vertical slice construction of the section 𝑇 con-

sidered as a double functor (ℎ𝑇 : ℎC→ ArenaT) (Proposition 4.4.2.2). This means that

if we can show that the assignment

(A : Cop → Cat, 𝑇) ↦→ (ℎ𝑇 : ℎC→ Arena(A ,𝑇))

gives a functor Theory → DblFun, then we can compose this with the vertical slice

construction 𝜎 : DblFun→ DblIx. This is what we will focus on.
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Lemma 4.5.2.3. The assignment

(A : Cop → Cat, 𝑇) ↦→ (ℎ𝑇 : ℎC→ Arena(A ,𝑇))

gives a functor 𝜄 : Theory→ DblFun. This functor sends a change of systems theories

C D

∫ 𝐶:C
A(𝐶)

∫ 𝐶:D
B(𝐶)

𝐹

𝑇1 𝑇2

©­«
𝐹

𝐹

ª®¬

(
𝜙
id

)
(4.8)

to the morphism double functors

ℎC ℎD

Arena(A ,𝑇1) Arena(B,𝑇2)

𝐹

ℎ𝑇1 ℎ𝑇2

(
𝜙
id

)

©­«
𝐹

𝐹

ª®¬

(4.9)

Proof. With all that we have set up, there is not too much to prove here. We first note that

the the functoriality of the assignment A ↦→ ArenaA was proven in Proposition 4.4.1.6.

We only need to focus on the vertical transformation.

We need to show that

(
𝜙
id

)
may be interpreted as a vertical transformation ℎ𝑇2◦𝐹→(

𝐹
𝐹

)
◦ ℎ𝑇1. There is some subtlety here; in Eq. (4.8),

(
𝜙
id

)
is interpreted as a natural

transformation taking place in the category of B-charts, while in Eq. (4.9) we have a

vertical transformation in the double category of arenas. But the vertical arrows in

Arena(B,𝑇2) are B-lenses, not B-charts. This explains the change of direction: we can

consider the chart
(
𝜙
id

)
:

(
𝐹
𝐹

)
◦ ℎ𝑇1 → ℎ𝑇2 ◦ 𝐹 as a lens

(
𝜙
id

)
: ℎ𝑇2 ◦ 𝐹 →

(
𝐹
𝐹

)
◦ ℎ𝑇1 by

the duality between pure charts and pure lenses. Recall that pure charts and lenses are

those having an isomorphism in the bottom component (Definition 2.6.1.7).

Let’s describe precisely how

(
𝜙
id

)
becomes a vertical transformation.

• For every 𝐶 ∈ ℎC, we have the lens

(
𝜙
id

)
:

(
𝑇2𝐹𝐶
𝐹𝑋

)
→

(
𝐹𝑇1𝐶
𝐹𝐹

)
.

• For every horizontal arrow 𝑓 : 𝐶′→ 𝐶 in ℎC (which is to say, any map in C), we
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have the square

(
𝑇2𝐹𝐶

′

𝐹𝐶′

) (
𝑇2𝐹𝐶

𝐹𝐶

)

(
𝐹𝑇1𝐶

′

𝐹𝐶′

) (
𝐹𝑇1𝐶

𝐹𝐶

)

©­«
𝑇2𝐹 𝑓

𝐹 𝑓

ª®¬
©­«
𝜙

id

ª®¬ ©­«
𝜙

id

ª®¬
©­«
𝐹𝑇1 𝑓

𝐹 𝑓

ª®¬

(4.10)

in Arena(B,𝑇2). This is a square because both its top and bottom component squares

commute; the bottom one trivially, and the top one by the defining Eq. (4.5) of 𝜙.

We now check that this satisfies the laws of a vertical transformation. It is largely trivial,

since the double categories are particularly simple (as double categories).

• (Vertical Naturality) By construction, the only vertical arrows in ℎC are identities,

so there is nothing to check.

• (Horizontal Naturality) Since Arena is thin (Definition 3.4.1.2), any two squares

with the same signature are equal, so there is nothing to check.

• (Horizontal Unity) This is true since all the functors involved in defining the top

and bottom of the square Eq. (4.10) preserve identities.

• (Square Naturality) This again follows trivially by the thinness of Arena.

The proof of functoriality itself follows from a straightforward comparison of the

two definitions of composition. They simply give the same formula on objects, and on

horizontal morphisms we get squares of the same signature in a thin double category

so there is nothing more to check. □

We can therefore define

Theory
Sys
−−→ DblIx B Theory

𝜄−→ DblFun
𝜎−→ DblIx.

Let’s take a moment to understand this definition in full. Suppose we have a change

of systems theories ((𝐹, 𝐹), 𝜙) : (A , 𝑇1) → (B, 𝑇2). Then 𝜄((𝐹, 𝐹), 𝜙) is a map of double

functors:

ℎC ℎD

Arena(A ,𝑇1) Arena(B,𝑇2)

𝐹

ℎ𝑇1 ℎ𝑇2

(
𝜙
id

)

©­«
𝐹

𝐹

ª®¬
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Then, by Proposition 4.4.4.6, we get a doubly indexed functor

ArenaT1

Cat

ArenaT2

(
𝐹
𝐹

)
SysT

1

𝜎

(
𝜙
id

)

SysT
2

In this diagram, 𝜎
(
𝜙
id

)
is defined as follows:

• (Definition 4.4.4.3: Item 2) For a T1-arena

(
𝐴−

𝐴+

)
, we have the functor

𝜎
(
𝜙
id

) (
𝐴−

𝐴+

)
: SysT1

(
𝐴−

𝐴+

)
→ SysT2

(
𝐹𝐴−

𝐹𝐴+

)
.

given by sending a simulation 𝜓 : T→ S to the composite:

(
𝑇1StateT

StateT

) (
𝑇1StateS

StateS

)

(
𝐴−

𝐴+

) (
𝐴−

𝐴+

)

©­«
𝑇1𝜓

𝜓

ª®¬
©­«
updateT

exposeT

ª®¬ ©­«
updateS

exposeS

ª®¬ ↦→

(
𝑇2𝐹StateT

𝐹StateT

) (
𝑇2𝐹StateS

𝐹StateS

)

(
𝐹𝑇1StateT

𝐹StateT

) (
𝐹𝑇1StateS

𝐹StateS

)

(
𝐹𝐴−

𝐹𝐴+

) (
𝐹𝐴−

𝐹𝐴+

)

©­«
𝑇2𝐹𝜓

𝐹𝜓

ª®¬
©­«
𝜙

id

ª®¬ ©­«
𝜙

id

ª®¬©­«
𝐹𝑇1𝜓

𝐹𝜓

ª®¬
©­«
𝐹updateT

𝐹exposeT

ª®¬ ©­«
𝐹updateS

𝐹exposeS

ª®¬

• (Definition 4.4.4.3: Item 3) Since the doubly indexed functor is taut, for any lens(
𝑗♯

𝑗

)
:

(
𝐴−

𝐴+

)
⇆

(
𝐵−

𝐵+

)
have a commuting square

SysT1

(
𝐴−

𝐴+

)
SysT2

(
𝐹𝐴−

𝐹𝐴+

)
SysT1

(
𝐵−

𝐵+

)
SysT2

(
𝐹𝐵−

𝐹𝐵+

)SysT
1

(
𝑗♯

𝑗

)
𝜎

(
𝜙
id

) (
𝐴−

𝐴+

)

SysT
2

(
𝐹𝑗♯

𝐹𝑗

)

𝜎

(
𝜙
id

) (
𝐵−

𝐵+

)
(4.11)

This tells us that changing systems theories and then wiring together systems

gives the same result as wiring together the systems first and then changing

systems theories.
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• (Definition 4.4.4.3: Item 4) For a T1-chart

(
𝑓♭
𝑓

)
:

(
𝐴−

𝐴+

)
⇒

(
𝐵−

𝐵+

)
, we have the square

in Cat

SysT1

(
𝐴−

𝐴+

)
SysT1

(
𝐵−

𝐵+

)

𝜎
(
𝜙
id

) (
𝑓♭
𝑓

)

SysT2

(
𝐹𝐴−

𝐹𝐴+

)
SysT2

(
𝐹𝐵−

𝐹𝐵+

)

Sys
(
𝑓♭
𝑓

)

𝜎

(
𝜙
id

) (
𝐴−

𝐴+

)
𝜎

(
𝜙
id

) (
𝐵−

𝐵+

)

Sys
(
𝐹 𝑓♭
𝐹 𝑓

)

(4.12)

given by sending a

(
𝑓♭
𝑓

)
-behavior to the composite:

(
𝑇1StateT

StateT

) (
𝑇1StateS

StateS

)

(
𝐴−

𝐴+

) (
𝐵−

𝐵+

)

©­«
𝑇1𝜓

𝜓

ª®¬
©­«
updateT

exposeT

ª®¬ ©­«
updateS

exposeS

ª®¬
©­«
𝑓♭

𝑓

ª®¬

↦→

(
𝑇2𝐹StateT

𝐹StateT

) (
𝑇2𝐹StateS

𝐹StateS

)

(
𝐹𝑇1StateT

𝐹StateT

) (
𝐹𝑇1StateS

𝐹StateS

)

(
𝐹𝐴−

𝐹𝐴+

) (
𝐹𝐵−

𝐹𝐵+

)

©­«
𝑇2𝐹𝜓

𝐹𝜓

ª®¬
©­«
𝜙

id

ª®¬ ©­«
𝜙

id

ª®¬©­«
𝐹𝑇1𝜓

𝐹𝜓

ª®¬
©­«
𝐹updateT

𝐹exposeT

ª®¬ ©­«
𝐹updateS

𝐹exposeS

ª®¬
©­«
𝐹 𝑓♭

𝐹 𝑓

ª®¬
In other words, changes of systems theory preserve behavior in the sense that if

𝜓 is a

(
𝑓♭
𝑓

)
-behavior then 𝐹𝜓 is a

(
𝐹 𝑓♭
𝑓

)
-behavior.

Example 4.5.2.4. For Euler approximatation

E𝜀 : Euc|Aff → DetEuc ,

we get a doubly indexed functor((
𝜄
𝜄

)
, 𝜎

(
𝜙
id

))
: (Euc|Aff) → DetEuc

by the functoriality of Sys, where 𝜄 : Aff→ Euc is the inclusion and 𝜙 : R𝑛 ×R𝑚 → R𝑛
is 𝜙(𝑝, 𝑣) = 𝑝 + 𝜀 · 𝑣. Let’s see it means for this to be a doubly indexed functor.



216 CHAPTER 4. CHANGE OF SYSTEMS THEORY

First, we have a functor

𝜎
(
𝜙
id

) (
𝐴−

𝐴+

)
: SysEucAff

(
𝐴−

𝐴+

)
→ SysDetEuc

(
𝐴−

𝐴+

)
.

This says that the Euler method preserves simulations. Second, we have a square like

Eq. (4.12) which says that the Euler method preserves behaviors. However, we have

to be careful here; the behaviors

(
𝜑,

(
𝑓♭
𝑓

))
which are preserved must have 𝜑 and

(
𝑓♭
𝑓

)
in the appropriate double category of arenas, and here we had to restrict to those for

which 𝜑 and 𝑓 are affine maps so that Eq. (4.7) can hold. In other words, we see that

the Euler method will preserve any affine behaviors of differential systems.

Most solutions to a system of differential equations — most trajectories — are not

affine. This is to say that there aren’t many behaviors of shape Time (from Exam-

ple 3.5.2.5). There is, however, an important class of affine solutions: steady states.

These are the behaviors of shape Fix from Example 3.5.2.6. So, in particular, we see that

the Euler method preserves steady states.

That the Euler method preserves steady states is of course evident from the formula:

if 𝑢(𝑠, 𝑖) = 0, then E𝜀𝑢(𝑠, 𝑖) = 𝑠+𝜀 ·𝑢(𝑠, 𝑖) = 𝑠. But we deduced this fact from our general

definition of change of systems theory. This sort of analysis can tell us precisely which

sorts of behaviors are preserved even in situtations where it may not be so obvious

from looking at a defining formula.

The fact that Sys(E𝜀) is a doubly indexed functor gives us a litany of compositionality

checks. In particular, the commuting square (Definition 4.4.4.3: Item 3) shows that if

we are to wire together a family of differential systems and then approximate the result

with the Euler method, we could have approximated each one and then wired together

the result with the same wiring pattern.

4.6 Summary and Further Reading

In this chapter, we organized the systems in a systems theory into doubly indexed

categories. While all the action takes place within the double category of arenas, the

doubly indexed category of systems separates the systems from their interfaces and the

behaviors from their charts. This let’s us describe the various sorts of composition — of

systems and of behaviors — and their relationships. We then saw how this construction

varied as we changed systems theory.

There are other examples of changes of systems theories not covered here. For

example, the Rutta-Kunge approximation can be seen as a change of systems theory;

see [Ngo17].



Chapter 5

Behaviors of the whole from
behaviors of the parts

5.1 Introduction

Let’s take stock of where we’ve been so far in the past couple chapters.

• In Section 1.2.1, we saw the definitions of deterministic systems and differential
systems.

• In Section 1.3, we learned about lenses. We saw how systems can be interpreted

as special sorts of lenses, and how we can wire together systems using lens

composition.

• In Chapter 2 we learned about various sorts of non-deterministic systems.
• In Chapter 3, we learned about behaviors and charts. We saw how to define

behaviors of systems using the notion of chart. Finally, we gave a formal defini-

tion of theory of dynamical systems, systematizing the various different notions —

discrete, differential, non-deterministic — of dynamical systems.

The two sorts of composition we have seen so far — lens composition and chart

composition — mirror the two sorts of composition at play in systems theory:

• We can compose systems by wiring them together. This uses lens composition.

• We can compose behaviors of systems like we compose functions. This uses chart

composition.

In this chapter, we will see how these two sorts of composition interact. In short,

behaviors of component systems give rise to behaviors of composite systems. The way

that behaviors of the whole arise from behaviors of the parts is called compositionality.

In this chapter, we will prove a general compositionality theorem concerning any

representable behavior in any systems theory.

But the behaviors of the component systems must be compatible with eachother:

if a system S1 has its parameters set by the exposed variables of a system S2, then a

behavior 𝜙1 of S1 will be compatible with a behavior 𝜙2 of S2 when 𝜙2 is a behavior

217
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for the parameters charted by the variables exposed by 𝜙1.

We will see that, remarkably, the way behaviors of composite systems arise from

behaviors of component systems (including the constraints of compatibility) are de-

scribed by a “matrix arithmetic for sets”. From a lens we will construct a “matrix of

sets”; multiplying the “vector of behaviors” of the component systems (indexed by their

charts) by this matrix yields the vector of behaviors of the composite. We begin this

chapter with a section explaining this idea in detail for steady states of deterministic

systems.

We have in fact already developed most of the important definitions — doubly

indexed category and lax doubly indexed functor — and proven most of the crucial

lemmas we need for this result in Section 4.2. In this chapter, we will then construct

representable doubly indexed functors which will organize the various facts concerning

the compositionality of any sort of behavior in any systems theory.

5.2 Steady states compose according to the laws of matrix
arithmetic

We have seen how we can compose systems, and we have seen how systems behave.

We have seen a certain composition of behaviors, a form of transitivity that says that if

we have aT-shaped behavior in S and a S-shaped behavior inU, then we get aT-shaped

behavior in U. But what’s the relationship between composing systems and composing

their behaviors?

In this section we will give a taste by showing how steady states compose. Later, in

Section 5.3, we will see a very abstract theorem that generalizes what we do here for

steady states in the deterministic systems theory to something that works for any sort
of behavior in any systems theory. But in order for that abstract theorem to make sense,

we should first see the concrete case of steady states in detail.

Recall that the chart of a steady state 𝑠 ∈ StateS is the pair

(
𝑖
𝑜

)
with 𝑜 = exposeS(𝑠)

and updateS(𝑠, 𝑖) = 𝑠. The set of all possible charts for steady states is therefore

InS ×OutS, and for every chart

(
𝑖
𝑜

)
we have the set SteadyS

(
𝑖
𝑜

)
of steady states for this

chart.

We can see this function SteadyS : InS×OutS → Set as a matrix of sets with SteadyS

(
𝑖
𝑜

)
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in the row 𝑖 and column 𝑜. For example, consider system S1 of Exercise 1.3.2.7:

S1 B

s11

blue
s12

red

s13

blue
s14

green

false

true

true

true

false

false

false

true

(5.1)

This has output value set Colors = {blue, red, green} and input parameter set Bool =

{true, false}. Here is its (Colors × Bool) steady state matrix:

SteadyS1 =



blue red green

true ∅
 s12

red
true

 ∅

false

 s11

blue
false , s13

blue
false

 ∅ ∅


(5.2)

If we just want to know how many

(
𝑖
𝑜

)
-steady states there are, and not precisely which

states they are, we can always take the cardinality of the sets in our matrix of sets to get

a bona-fide matrix of numbers. Doing this to the above matrix gives us the matrix

[ blue red green

true 0 1 0

false 2 0 0

]
Now, let’s take a look at system S2 from the same exercise:

S2 B

s21

true
s22

false

s23

true
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This has steady state matrix:

SteadyS2 =



true false

blue

 s21

true
, s23

true  ∅

red

 s21

true  ∅

green ∅
 s22

false 


(5.3)

Or, again, if we just want to know how many steady states there are for each chart:

SteadyS2 =


true false

blue 2 0

red 1 0

green 0 1


We can wire these systems together to get a system S:

S B S1 S2

With just a bit of thought, we can find the steady states of this systems without fully

calculating its dynamics. A state of S is a pair of states 𝑠1 ∈ StateS1 and 𝑠2 ∈ StateS2 , so

for it to be steady both its constituent states must be steady. So let

(
𝑖
𝑜

)
:

(
1
1

)
⇒

(
Bool
Bool

)
be a chart for S — a pair of booleans. We need 𝑠1 and 𝑠2 to both be steady, so in

particular 𝑠1 must be steady at the input 𝑖, and 𝑠2 must expose 𝑜; but, most importantly,

𝑠2 must then be steady at the input exposeS1
(𝑠1)which 𝑠1 exposes.

So, to find the set of

(
true

true

)
-steady states of S, we must find a state 𝑠1 of S1 which is

steady for the input true and then a steady state 𝑠2 of S2 whose input is what 𝑠1 outputs

and whose output is true. There are three pieces of data here: the steady state 𝑠1 of S1,

the steady state 𝑠2 of S2, and the intermediate value expose by the first state and input

into the second state. We can therefore describe the set of

(
true

true

)
-steady states of S like

this:

SteadyS

(
true

true

)
=

{
(𝑚, 𝑠1 , 𝑠2)

�����𝑠1 ∈ SteadyS1
(
true

𝑚

)
, 𝑠2 ∈ SteadyS2

(
𝑚

true

)}
=

∑
𝑚∈Colors

SteadyS1

(
true

𝑚

)
× SteadyS2

(
𝑚

true

)
.
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This formula looks very suspiciously like matrix multiplication! Indeed, if we

multiply the matrices of numbers of steady states from S1 and S2, we get:

[
true 0 1 0

false 2 0 0

] 
true false

2 0

1 0

0 1

 =

[ true false

true 1 0

false 4 0

]
which is the matrix of how many steady states S has! What’s even more suspicious

is that our wiring diagram for S looks a lot like the string diagram we would use to

describe the multiplication of matrices:

S1 S2 SteadyS1 SteadyS2Bool Bool
Colors

This can’t just be a coincidence. Luckily for our sanity, it isn’t. In the remainder of this

section, we will show how various things one can do with matrices — multiply them,

trace them, Kronecker product them — can be done for matrices of sets, and how if

your wiring diagram looks like its telling you to do that thing, then you can do that

thing to the steady states of your internal systems to get the steady states of the whole

wired system

Matrices of sets We’ll be working with matrices of sets — now and in the coming

section — quite a bit, so we should really nail them down. Matrices of sets work a lot

like matrices of numbers, especially when the sets are finite; then they are very nearly

the same thing as matrices of whole numbers. But the matrix arithmetic of infinite sets

works just the same as with finite sets, so we’ll do everything in that generality.1

Definition 5.2.0.1. Let 𝐴 and 𝐵 be two sets. 𝐵 × 𝐴 matrix of sets is a dependent set

𝑀 : 𝐵 × 𝐴→ Set. For 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, we write 𝑀𝑏𝑎 or 𝑀(𝑏,𝑎) for set indexed by 𝑎 and

𝑏, and call this the (𝑏, 𝑎)-entry of the matrix 𝑀.

We draw of matrix of sets with the following string diagram:

𝑀𝐴 𝐵

Remark 5.2.0.2. We can see a dependent set 𝑋− : 𝐴 → Set through the matrix of

sets point of view as a vector of sets. This is because 𝑋− is equivalently given by

𝑋− : 𝐴 × 1→ Set, which we see is a 𝐴 × 1 matrix of sets. A 𝑛 × 1 matrix is equivalently

a column vector.

Now we’ll go through and define the basic operations of matrix arithmetic: mutli-

plication, Kronecker product (also known as the tensor product), and partial trace.

1
This will help us later when we deal with behaviors that have more complicated charts. For example,

even finite systems can have infinitely many different trajectories, so we really need the infinite sets.
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Definition 5.2.0.3. Given an 𝐵 × 𝐴 matrix of sets 𝑀 and a 𝐶 × 𝐵 matrix of sets 𝑁 , their

product 𝑁𝑀 (or 𝑀 ×𝐵 𝑁 for emphasis) is the 𝐶 × 𝐴 matrix of sets with entries

𝑁𝑀𝑐𝑎 =
∑
𝑏∈𝐵

𝑁𝑐𝑏 ×𝑀𝑏𝑎 .

We draw the multiplication of matrices of sets with the following string diagram:

𝑀 𝑁𝐴 𝐶
𝐵

The identity matrix 𝐼𝐴 is an 𝐴 × 𝐴 matrix with entries

𝐼𝑎𝑎′ =

{
1 if 𝑎 = 𝑎′

∅ if 𝑎 ≠ 𝑎′
.

We draw the identity matrix as a string with no beads on it.

𝐴 𝐴

Exercise 5.2.0.4. Multiplication of matrices of sets satisfies the usual properties of

associativity and unity, but only up to isomorphism. Let 𝑀 be a 𝐵 × 𝐴 matrix, 𝑁 a

𝐶 × 𝐵 matrix, and 𝐿 a 𝐷 × 𝐶 of sets. Show that

1. For all 𝑎 ∈ 𝐴 and 𝑑 ∈ 𝐷, ((𝐿𝑁)𝑀)𝑑𝑎 � (𝐿(𝑁𝑀))𝑑𝑎 .
2. For all 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, (𝑀𝐼𝐴)𝑏𝑎 � 𝑀𝑏𝑎 � (𝐼𝐵𝑀)𝑏𝑎 .

♢

Remark 5.2.0.5. The isomorphisms you defined in Exercise 5.2.0.4 are coherent, much in

the way the associativity and unity isomorphisms of a monoidal category are. Together,

this means that there is a bicategory of sets and matrices of sets between them.

Definition 5.2.0.6. Let𝑀 be a 𝐵×𝐴matrix and𝑁 a 𝐶×𝐷matrix of sets. Their Kronecker
product or tensor product 𝑀 ⊗ 𝑁 is a (𝐵 × 𝐶) × (𝐴 × 𝐷)matrix of sets with entries:

(𝑀 ⊗ 𝑁)(𝑏,𝑐)(𝑎,𝑑) = 𝑀𝑏𝑎 × 𝑁𝑐𝑑 .

We draw the tensor product 𝑀 ⊗ 𝑀 of matrices as:

𝑀

𝑁

𝐴 𝐵

𝐷𝐶

Finally, we need to define the partial trace of a matrix of sets.
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Definition 5.2.0.7. Suppose that 𝑀 is a (𝐴 × 𝐶) × (𝐴 × 𝐵)matrix of sets. Its partial trace
tr𝐴𝑀 is a 𝐶 × 𝐵 matrix of sets with entries:

(tr𝐴)𝑀𝑐𝑏 =
∑
𝑎∈𝐴

𝑀(𝑎,𝑐)(𝑎,𝑏).

We draw the partial trace of a matrix of sets as:

𝑀𝐵 𝐶

𝐴

Exercise 5.2.0.8. Here’s an important sanity check we should do about our string

diagrams for matrices of sets. The following two diagrams should describe the same

matrix, even though they describe it in different ways:

𝑀 𝑁𝐴 𝐶
𝐵 𝑀

𝑁
𝐴 𝐶

𝐵

The diagram on the left says “multiply 𝑀 and 𝑁”, while the diagram on the right says

“tensor 𝑀 and 𝑁 , and then partially trace them.”. Show that these two diagrams do

describe the same matrix:

𝑁𝑀 � tr𝐵(𝑀 ⊗ 𝑁).

Compare this to Example 1.3.2.5, where we say that wiring an input of a system to an

output of another can be seen as first taking their parallel product, and then forming a

loop. ♢

Steady states and matrix arithmetic For the remainder of this section, we will show

that we can calculate the steady state matrix of a composite system in terms of its

component system in a very simple way:

• First, take the steady state matrices of the component systems.

• Then consider the wiring diagram as a string diagram for multiplying, tensoring,

and tracing matrices.

• Finally, finish by doing all those operations to the matrix.

In Section 5.3, we will see that this method — or something a lot like it — works

calculating the behaviors of a composite system out of the behaviors of its components,

as long as the representative of that behavior exposes its entire state. That result will

be nicely packaged in a beautiful categorical way: we’ll make an doubly indexed functor.
But for now, let’s just show that tensoring and partially tracing steady state matrices

correponds to taking the parallel product and wiring an input to an output, respectively,

of systems.
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Proposition 5.2.0.9. Let S1 and S2 be systems. Then the steady state matrix of the

parallel product S1 ⊗ S2 is the tensor of their steady state matrices:

SteadyS1⊗S2 � SteadyS1 ⊗ SteadyS2 .

Proof. First, we note that these are both (OutS1 × OutS2) × (InS1 × InS2)-matrices of sets.

Now, on a chart

(
(𝑖1 ,𝑖2)
(𝑜1 ,𝑜2)

)
, a steady state in S1⊗S2 will be a pair (𝑠1 , 𝑠2) ∈ StateS1×StateS2

such that updateSj
(𝑠 𝑗 , 𝑖 𝑗) = 𝑠 𝑗 and exposeSj

(𝑠 𝑗) = 𝑜 𝑗 for 𝑗 = 1, 2. In other words, its just

a pair of steady states, one in S1 and one in S2. This is precisely the

(
(𝑖1 ,𝑖2)
(𝑜1 ,𝑜2)

)
-entry of

the right hand side above. □

Remark 5.2.0.10. Proposition 5.2.0.9 is our motiviation for using the symbol “⊗” for the

parallel product of systems.

Proposition 5.2.0.11. Let S be a system with InS = 𝐴 × 𝐵 and OutS = 𝐴 × 𝐶. Let S′ be

the system formed by wiring the 𝐴 output into the 𝐴 input of S:

S′ B
S

Then the steady state matrix of S′ is given by partially tracing out 𝐴 in the steady state

matrix of S:

SteadyS′ = SteadyS

𝐴

= tr𝐴 (SteadyS)

Proof. Let’s first see what a steady state of S′ would be. Since S′ is just a rewiring of S,

it has the same states; so, a steady state 𝑠 of S′ is in particular a state of S. Now,

updateS′(𝑠, 𝑏) = updateS(𝑠, (𝜋1exposeS(𝑠), 𝑏))

by definition, so if updateS′(𝑠, 𝑏) = 𝑠, then updateS(𝑠, (𝜋1exposeS(𝑠), 𝑏)) = 𝑠. If also

exposeS′(𝑠) = 𝑐 (so that 𝑠 is a

(
𝑏
𝑐

)
-steady state of S′), then 𝜋2exposeS(𝑠) = exposeS′(𝑠) =

𝑐 as well. In total then, starting with a

(
𝑏
𝑐

)
-steady state 𝑠 of S′, we get a

(
(𝜋1exposeS(𝑠),𝑏)
(𝜋1exposeS(𝑠),𝑐)

)
-

steady state of S. That is, we have a function

𝑠 ↦→ (𝜋1exposeS(𝑠), 𝑠) : SteadyS′

(
𝑏

𝑐

)
→ (tr𝐴SteadyS)

(
𝑏

𝑐

)
.

It remains to show that this function is a bĳection. So, suppose we have a pair

(𝑎, 𝑠) ∈ tr𝐴SteadyS

(
𝑏
𝑐

)
of an 𝑎 ∈ 𝐴 and a

(
(𝑎,𝑏)
(𝑎,𝑐)

)
steady state of S. Then

updateS′(𝑠, 𝑏) = updateS(𝑠, (𝜋1exposeS(𝑠), 𝑏))
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= updateS(𝑠, (𝑎, 𝑏)) since exposeS(𝑠) = (𝑎, 𝑐).

= 𝑠 since 𝑠 is a

(
(𝑎, 𝑏)
(𝑎, 𝑐)

)
-steady state.

exposeS′(𝑠) = 𝜋2exposeS(𝑠) = 𝑐.

This shows that 𝑠 is also a

(
𝑏
𝑐

)
steady state of S′, giving us a function (𝑎, 𝑠) ↦→ 𝑠 :

(tr𝐴SteadyS) → SteadyS′ . These two functions are plainly inverse. □

We can summarize Proposition 5.2.0.11 in the following commutative diagram:

S

S SteadyS

SteadyS
Steady

Steady

(5.4)

The horizontal maps take the steady states of a system, while the vertical map on

the left wires together the system with that wiring diagram, and the vertical map on

the right applies that transformation of the matrix. In the next section, we will see how

this square can be interepreted as a naturality condition in a doubly indexed functor.
One thing to notice here is that taking the partial trace (the right vertical arrow in

the diagram) is itself given by multiplying by a certain matrix.

Proposition 5.2.0.12. Let 𝑀 be a (𝐴 × 𝐶) × (𝐴 × 𝐵) matrix of sets. Let Tr𝐴 be the(
𝐶 × 𝐵

)
×

(
(𝐴 × 𝐶) × (𝐴 × 𝐵)

)
matrix of sets with entries:

Tr𝐴𝐴(𝑐,𝑏)((𝑎,𝑐′),(𝑎′,𝑏′)) B

{
1 if 𝑎 = 𝑎′, 𝑏 = 𝑏′, and 𝑐 = 𝑐′.

∅ otherwise.

Then, considering 𝑀 as a

(
(𝐴× 𝐶) × (𝐴× 𝐵)

)
× 1 matrix of sets, taking its trace is given

by multiplying by Tr𝐴:

tr𝐴𝑀 � Tr𝐴𝑀
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Proof. Let’s calculate that matrix product on the right.

(Tr𝐴𝑀)(𝑐,𝑏) =
∑

((𝑎,𝑐′),(𝑎′,𝑏′))∈(𝐴×𝐶)×(𝐴×𝐵)
Tr𝐴(𝑐,𝑏)((𝑎,𝑐′),(𝑎′,𝑏′)) ×𝑀(𝑎,𝑐′)(𝑎′,𝑏′)

Now, since Tr𝐴(𝑐,𝑏)((𝑎,𝑐′),(𝑎′,𝑏′)) is a one element set (if 𝑎 = 𝑎′, 𝑐 = 𝑐′, and 𝑏 = 𝑏′) and is

empty otherwise, the inner expression has the elements of 𝑀(𝑎,𝑐′)(𝑎′,𝑏′) if and only if

𝑎 = 𝑎′, 𝑏 = 𝑏′, and 𝑐 = 𝑐′ and is otherwise empty. So, we conclude that∑
((𝑎,𝑐′),(𝑎′,𝑏′))∈(𝐴×𝐶)×(𝐴×𝐵)

Tr𝐴(𝑐,𝑏)((𝑎,𝑐′),(𝑎′,𝑏′)) ×𝑀(𝑎,𝑐′)(𝑎′,𝑏′) � 𝑀(𝑎,𝑐)(𝑎,𝑏). □

5.3 The big theorem: representable doubly indexed functors

We have now introduced all the characters in our play: the double categories of arenas

and matrices, and doubly indexed categories of systems and vectors. In this section,

we will put the plot in motion.

In Section 5.2, we saw that the steady states of dynamical systems with interface(
𝐼
𝑂

)
compose like an 𝐼 ×𝑂 matrix. We proved a few propositions to this effect, namely

Proposition 5.2.0.9 and Proposition 5.2.0.11, but we didn’t precisely mark out the scope

of these results, or describe the full range of laws that are satisfied.

In this section, we will generalize the results of that section to all behaviors of systems,

not just steady states. We will precisely state all the ways that behaviors can be

composed by systems, and we will give a condition on the kinds of behaviors for which

we can calculate the behavior of a wired together system entirely from the behavior

of its component systems. All of this will be organized into a doubly indexed functor
BehaveT : Sys→ Vec which will send a system S to its set of T-shaped behaviors.

In fact, our definition of BehaveT will be entirely abstract; it will work for almost

any doubly indexed category A : D → Cat (there is a small condition on the indexing

double category D). BehaveT will be a representable doubly indexed category. Before

going on to construct representable doubly indexed categories, let’s take a minute to

refresh ourselves on what representable functors are for categories. The essential idea

is the same.

If C is a category and𝑇 an object of C, then we can see maps 𝑓 : 𝑇 → 𝑋 as “figures of

shape 𝑇 in 𝑋”. It is often the case that we have some other way of talking about figures

of shape 𝑇 in 𝑋 in terms that don’t mention 𝑇 — in this case we say that 𝑇 represents
figures of shape 𝑇. This phenomenon is very widespread, so let’s give a number of

examples:

• Suppose that C is the category of sets, and 𝑇 = 1 is a one element set. Then a map

𝑓 : 𝑇 → 𝑋 uniquely picks out an element of 𝑋. We see that 𝑇 has the shape of a

single element, and a map from 𝑇 to 𝑋 is a thing in 𝑋 whose shape is an element;

that is, an element of 𝑋. We can say that 1 represents elements.
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• Suppose that C is the category of sets, but now that 𝑇 = 2 is a two-element set. A

two-element set is an abstract pair of elements, and a map 𝑓 : 𝑇 → 𝑋 now picks

out a pair of elements in 𝑋. We can say that 2 represents pairs.

• Suppose that C is the category of simple, undirected graphs — that is, sets 𝑋

equipped with an irreflexive relation 𝐸𝑋 ⊆ 𝑋 × 𝑋 telling us which two elements

are connected by an edge. The maps of this category need to preserve edges. If

𝑇 is the graph consisting of a single edge (formally, 𝑇 = 2 with (0, 1) ∈ 𝐸𝑇 being

the only edge), then a map 𝑓 : 𝑇 → 𝑋 must pick out a pair of points in 𝑋 with

an edge between them. In other words, maps 𝑇 → 𝑋 are edges in 𝑋. So we may

say that 𝑇 represents edges.

• Suppose that C is the category of rings, and let 𝑇 = Z[𝑥, 𝑦] be the ring of poly-

nomials in two variables. A ring homomoprhism 𝑓 : 𝑇 → 𝑋 can send 𝑥 to any

element 𝑓 (𝑥) and similarly 𝑦 to any element 𝑓 (𝑦); once it’s done that, the value

of 𝑓 on any polynomial in 𝑥 and 𝑦 must be given by

𝑓
(∑

𝑎𝑖 𝑗𝑥
𝑖𝑦 𝑗

)
=

∑
𝑎𝑖 𝑗 𝑓 (𝑥)𝑖 𝑓 (𝑦)𝑗 .

since 𝑓 is presumed to be a ring homomorphism. Actually, there is one constraint

on 𝑓 (𝑥) and 𝑓 (𝑦) for this to work; since 𝑥𝑦 = 𝑦𝑥 as polynomials, we must have

𝑓 (𝑥) 𝑓 (𝑦) = 𝑓 (𝑦) 𝑓 (𝑥). Therefore, we see that Z[𝑥, 𝑦] represents pairs of elements

which commute in the category of rings.

• As we saw in Chapter 3, all sorts of behaviors of systems — trajectories, periodic

orbits, steady states, etc — are represented by simple systems in the category of

systems and behaviors between them.

We could continue endlessly. The idea of representability is fundamental in category

theory. Let’s make it a little more explicit exactly what it means for 𝑇 to represent

something.

If 𝑇 is an object of C, then for any object 𝑋 of C we get a set C(𝑇, 𝑋) of all maps

from 𝑇 to 𝑋 in C. If 𝑔 : 𝑋 → 𝑌 is a map in C, then for any 𝑓 : 𝑇 → 𝑋 we get a

map 𝑓 # 𝑔 : 𝑇 → 𝑌; in other words, for 𝑔 : 𝑋 → 𝑌 we get a map C(𝑇, 𝑋)
−#𝑔
−−→ C(𝑇, 𝑌)

given by post-composing with 𝑔. This gives us a functor C(𝑇,−) : C → Set. This is a

representable functor.

The idea of this section is to use the fact that behaviors are represented by simple

systems to prove a compositionality result. This compositionality result is packaged

up into a doubly indexed functor, and we will construct it as a representable doubly in-

dexed functor. Instead of going from a category to the category of sets as representable

functors do, our representable doubly indexed functors will go from a doubly indexed

category (satisfying a little condition) to the doubly indexed category Vec of vectors of

sets.
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5.3.1 Turning lenses into matrices: Representable double Functors

In Section 5.2, we saw how we could re-interpret a wiring diagram as a schematic for

multiplying, tensoring, and tracing matrices. At the very end, in Proposition 5.2.0.12,

we saw that we can take the trace tr𝐴𝑀 of a (𝐴×𝐶) × (𝐴× 𝐵)-matrix 𝑀 by considering

it as a (𝐴 × 𝐶) × (𝐵 × 𝐶) length vector and then multiplying it by a big but very sparse

(𝐶 × 𝐵) × ((𝐴 × 𝐶) × (𝐵 × 𝐶))-matrix Tr
𝐴

. Taking the trace of a matrix corresponded to

the wiring diagram

In this section, we will see a general formula for taking an arbitrary lens and turning it

into a matrix. Mutliplying by the matrix will then correspond to wiring according to

that lens.

This process of turning a lens into a matrix will give us a functor Lens → Matrix
from the category of lenses to the category of matrices of sets. We’ll start by exploring

this functor in the deterministic systems theory; then we will abstract and find that the

same argument works in any systems theory.

The resulting matrices will have entries that are either 1 or ∅; we can think of this as

telling us whether (1) or not (∅) the two charts are to be wired together. As we saw in

Example 3.4.1.4, we can see a square in the double category of arenas as telling us how

a chart can be wired together along a lens into another chart. Therefore, we will take

the entries of our matrices to be the sets of appropriate squares in arena — but there is

either a single square (if the appropriate equations hold) or no square (if they don’t), so

we will end up with a matrix whose entries either have a single element or are empty.
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Proposition 5.3.1.1. For any arena in the deterministic systems theory

(
𝐼
𝑂

)
, there is a

functor

ChartDet

((
𝐼
𝑂

)
, −

)
: LensDet →Matrix

from the category of lenses to the category of matrices of sets which sends an arena(
𝐴−

𝐴+

)
to the set ChartDet

((
𝐼
𝑂

)
,
(
𝐴−

𝐴+

))
of charts from

(
𝐼
𝑂

)
to

(
𝐴−

𝐴+

)
, and which sends a

lens

(
𝑤♯

𝑤

)
:

(
𝐴−

𝐴+

)
⇆

(
𝐵−

𝐵+

)
to the ChartDet

((
𝐼
𝑂

)
,
(
𝐵−

𝐵+

))
× ChartDet

((
𝐼
𝑂

)
,
(
𝐴−

𝐴

))
matrix

of sets

ChartDet

((
𝐼
𝑂

)
,
(
𝑤♯

𝑤

))
: ChartDet

((
𝐼
𝑂

)
,
(
𝐵−

𝐵+

))
× ChartDet

((
𝐼
𝑂

)
,
(
𝐴−

𝐴

))
→ Set

((
𝑓♭
𝑓

)
,
(
𝑔♭
𝑔

))
↦→



The set of squares

(
𝐼

𝑂

) (
𝐴−

𝐴+

)

(
𝐼

𝑂

) (
𝐵−

𝐵+

)

©­«
𝑓♭

𝑓

ª®¬
©­«
𝑤♯

𝑤

ª®¬
©­«
𝑔♯

𝑔

ª®¬

in ArenaDet


=


1 if

{
𝑔(𝑜) = 𝑤( 𝑓 (𝑜)) for all 𝑜 ∈ 𝑂,

𝑓♭(𝑖 , 𝑜) = 𝑤♯( 𝑓 (𝑜), 𝑔♭(𝑖 , 𝑜)) for all 𝑖 ∈ 𝐼 and 𝑜 ∈ 𝑂.

∅ otherwise

Proof. By vertical composition of squares,

(
𝐼

𝑂

) (
𝐴−

𝐴+

)

(
𝐼

𝑂

) (
𝐵−

𝐵+

)

(
𝐼

𝑂

) (
𝐼′

𝑂′

)

©­«
𝑓♭

𝑓

ª®¬
©­«
𝑤♯

𝑤

ª®¬
©­«
𝑔♭

𝑔

ª®¬ ©­«
𝑣♯

𝑣

ª®¬
©­«
ℎ♭

ℎ

ª®¬

==

(
𝐼

𝑂

) (
𝐴−

𝐴+

)

(
𝐼

𝑂

) (
𝐼

𝑂′

)

©­«
𝑓♭

𝑓

ª®¬
©­«
𝑤♯

𝑤

ª®¬#©­«
𝑣♯

𝑣

ª®¬
©­«
ℎ♭

ℎ

ª®¬

there is always a map from the composite of two of these matrices to the matrix
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described by the composite. It is not, however, obvious that this map is a bĳection —

which is what we need to prove functoriality.

Suppose we have a square as on the left hand side; let’s see that we can factor it

into two squares as on the right hand side. We need to construct the middle chart(
𝑔♭
𝑔

)
:

(
𝐼
𝑂

)
⇒

(
𝐵−

𝐵+

)
from

(
𝑓♭
𝑓

)
and

(
ℎ♭
ℎ

)
. For the bottom of top square to commute, we

see that 𝑔 must equal 𝑤 ◦ 𝑓 , so we can define 𝑔 B 𝑤 ◦ 𝑓 . On the other hand, for the top

of the bottom square to commute, we must have that 𝑔♭(𝑖 , 𝑜) = 𝑣♯(𝑔(𝑜), ℎ♭(𝑖 , 𝑜)); again,

we can take this as a definition. It remains to show that the other half of each square

commutes. For the top of the top square to commute means that

𝑓♭(𝑖 , 𝑜) = 𝑤♯( 𝑓 (𝑜), 𝑔♭(𝑖 , 𝑜))

which we can see holds by

𝑤♯( 𝑓 (𝑜), 𝑔♭(𝑖 , 𝑜)) = 𝑤♯( 𝑓 (𝑜), 𝑣♯(𝑔(𝑜), ℎ♭(𝑖 , 𝑜)))
= 𝑤♯( 𝑓 (𝑜), 𝑣♯(𝑤 𝑓 (𝑜), ℎ♭(𝑖 , 𝑜)))
= 𝑓♭(𝑖 , 𝑜)

by the commutativity of the square on the right.

On the other hand, to show that the bottom of the bottoms square commutes, we

need that ℎ = 𝑣 ◦ 𝑔. But by hypothesis, ℎ = 𝑣 ◦ 𝑤 ◦ 𝑓 , and we defined 𝑔 = 𝑤 ◦ 𝑓 . □

Example 5.3.1.2. Let’s see what happens when we take the functor ChartDet

((
𝐼
𝑂

)
,−

)
for the arena

(
1
1

)
. A chart

(
𝑎−

𝑎+

)
:

(
1
1

)
⇒

(
𝐴−

𝐴+

)
is just a pair of elements 𝑎− ∈ 𝐴− and

𝑎+ ∈ 𝐴+, so

ChartDet

((
1
1

)
,
(
𝐴−

𝐴+

))
= 𝐴− × 𝐴+.

Now, if we have a lens

(
𝑤♯

𝑤

)
:

(
𝐴−

𝐴+

)
⇆

(
𝐵−

𝐵+

)
, we have a square

(
1

1

) (
𝐴−

𝐴+

)

(
1

1

) (
𝐵−

𝐵+

)

©­«
𝑎−

𝑎+
ª®¬

©­«
𝑤♯

𝑤

ª®¬
©­«
𝑏−

𝑏+
ª®¬

if and only if 𝑤(𝑎+) = 𝑏+ and 𝑤♯(𝑎+ , 𝑏−) = 𝑎−. Thinking of

(
𝑤♯

𝑤

)
as a wiring diagram,

this would mean that 𝑏+ is that part of 𝑎+ which is passed forward on the outgoing
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wires, and 𝑎− is the inner input which comes from the inner output 𝑎+ and outer input

𝑏−.

To take a concrete example, suppose that

(
𝑤♯

𝑤

)
were the following wiring diagarm:

That is, let’s take 𝐴+ = 𝑋 × 𝑌 and 𝐴− = 𝑋 × 𝑍, and 𝐵+ = 𝑌 and 𝐵− = 𝑍, and

𝑤(𝑥, 𝑦) = 𝑦

𝑤♯((𝑥, 𝑦), 𝑧) = (𝑥, 𝑧).

Using the definition above, we can calculate the resulting matrix ChartDet

((
𝐼
𝑂

)
,
(
𝑤♯

𝑤

))
as having (((𝑥, 𝑦), (𝑥′, 𝑧)), (𝑦′, 𝑧′))-entry{

1 if 𝑤(𝑥, 𝑦) = 𝑦′ and 𝑤♯((𝑥, 𝑦), 𝑧) = (𝑥′, 𝑧′)
∅ otherwise.

or, by the definition of

(
𝑤♯

𝑤

)
,{
1 if 𝑥 = 𝑥′, 𝑦 = 𝑦′, and 𝑧 = 𝑧′

∅ otherwise.

which was the definition of Tr
𝑋

given in Proposition 5.2.0.12!

Exercise 5.3.1.3. Let

(
𝑤♯

𝑤

)
:

(
𝐴×𝐵
𝐵×𝐶

)
⇆

(
𝐴
𝐶

)
be the wiring diagram

Calculate the entries of the matrix ChartDet

((
1
1

)
,
(
𝑤♯

𝑤

))
. ♢

By the functoriality of Proposition 5.3.1.1, we can calculate the matrix of a big wiring

diagram by expressing it in terms of a series of traces, and mutliplying the resulting

matrices together. This means that the process of multiplying, tensoring, and tracing

matrices described by a wiring diagram is well described by the matrix we constructed

in Proposition 5.3.1.1, since we already know that it interprets the basic wiring diagrams

correctly.
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But we are also interested in charts, since we have to chart out our behaviors. So we

will give a double functor ArenaDet → Matrix that tells us not only how to turn a lens

into a matrix, but also how this operation interacts with charts. This is an example of

a representable double functor.

We will first define the double functor ArenaDet

((
𝐼
𝑂

)
,−

)
: ArenaDet → Matrix

represented by an arena

(
𝐼
𝑂

)
explicitly. Then we will see how this argument can be

abstracted to a double category which satisfies a horizontal factorization property.
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Proposition 5.3.1.4. There is a double functor

ArenaDet

((
𝐼
𝑂

)
,−

)
: Arena→Matrix

which acts in the following way:

• An arena

(
𝐴−

𝐴+

)
gets sent to the set ChartDet

((
𝐼
𝑂

)
,
(
𝐴−

𝐴+

))
of charts from

(
𝐼
𝑂

)
to(

𝐴−

𝐴+

)
.

• The vertical functor is Chart
((

𝐼
𝑂

)
,−

)
: Lens→Matrix from Proposition 5.3.1.1.

• The horizontal functor is the representable functor Arena
((

𝐼
𝑂

)
,−

)
: Arena →

Set which acts on a chart

(
𝑓♭
𝑓

)
:

(
𝐴−

𝐴+

)
⇒

(
𝐵−

𝐵+

)
by post-composition.

• To a square

𝛽 =

(
𝐴−

𝐴+

) (
𝐵−

𝐵+

)
(
𝐶−

𝐶+

) (
𝐷−

𝐷+

)

(
𝑓♭
𝑓

)
(
𝑗♯

𝑗

) (
𝑘♯

𝑘

)
(
𝑔♯

𝑔

)
in the double category of arenas, we give the square

ArenaDet

((
𝐼
𝑂

)
, 𝛽

)
=

ArenaDet

((
𝐼
𝑂

)
,
(
𝐴−

𝐴+

))
ArenaDet

((
𝐼
𝑂

)
,
(
𝐵−

𝐵+

))

ArenaDet

((
𝐼
𝑂

)
,
(
𝐶−

𝐶+

))
ArenaDet

((
𝐼
𝑂

)
,
(
𝐷−

𝐷+

))
ArenaDet

((
𝐼
𝑂

)
,

(
𝑓♭
𝑓

))

ArenaDet

((
𝐼
𝑂

)
,

(
𝑗♯

𝑗

))
ArenaDet

((
𝐼
𝑂

)
,

(
𝑘♯

𝑘

))

ArenaDet

((
𝐼
𝑂

)
,

(
𝑔♭
𝑔♭

))
in the double category of matrices defined by horizontal composition of squares

in ArenaDet (remember that the entries of these matrices are sets of squares

in ArenaDet, even though that means they either have a single element or no

elements).

ArenaDet

((
𝐼
𝑂

)
, 𝛽

)
(𝛼) = 𝛼 | 𝛽.

Proof. We can write the double functor ArenaDet

((
𝐼
𝑂

)
,−

)
entirely in terms of the

double category ArenaDet:

• It sends an arena

(
𝐴−

𝐴+

)
to the set of charts (horizontal maps)

(
𝑓♭
𝑓

)
:

(
𝐼
𝑂

)
⇒

(
𝐴−

𝐴+

)
.
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• It sends a chart

(
𝑔♭
𝑔

)
to the map

(
𝑓♭
𝑓

)
↦→

(
𝑓♭
𝑓

)���( 𝑔♭
𝑔

)
.

• It sends a lens

(
𝑤♯

𝑤

)
to the set of squares 𝛽 :

(
𝐼
𝑂

)
→

(
𝑤♯

𝑤

)
, indexed by their top

and bottom boundaries.

• It sends a square 𝛼 to the map given by horizontal compostion 𝛽 ↦→ 𝛽 | 𝛼.

We can see that this double functor (let’s call it 𝐹, for short) takes seriously the idea

that “squares are charts between lenses” from Example 3.4.1.4. From this description,

and the functoriality of Proposition 5.3.1.1, we can see that the assignments above

satisfy the double functor laws.

• Horizontal functoriality follows from horizontal associativity in ArenaDet:

𝐹(𝛼 | 𝛽)(𝛾) = 𝛾 | (𝛼 | 𝛽) = (𝛾 | 𝛼) | 𝛽 = 𝐹(𝛼) | 𝐹(𝛽)(𝛾).

• Vertical functoriality follows straight from the definitions:

𝐹

(
𝛼
𝛽

)
(_, 𝛾, 𝛿) = (_, 𝛾 | 𝛼, 𝛿 | 𝛽) = 𝐹(𝛼)(𝛾)

𝐹(𝛽)(𝛿) .

• It’s pretty straightforward to check that identities get sent to identities.

□

This construction is an example of a more general notion of representable double
functor. Using the general notion, we can construct a similar double functor

ArenaT
((

𝐼
𝑂

)
,−

)
: ArenaT →Matrix

for any systems theory T. Unlike for categories, not all objects in all double categories

admit representable double functors2. There is a small condition on an object: the

horizontal factor condition.

Definition 5.3.1.5. Let D be a double category. An object 𝐷 of D satisfies the horizontal
factor condition when for any square

𝐷 𝑋1

𝛼 𝑋2

𝐷 𝑋3

𝑓1

𝑘1

𝑘2

𝑓3

there is a unique triple of a horizontal 𝑓2 : 𝐷 → 𝑋2 and squares 𝛼1 : 𝐷 ⇒ 𝑘1 and

2
Any object in a double category does admit a representable lax double functor, but we won’t need

any of these and so won’t introduce this notion.
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𝛼2 : 𝐷 ⇒ 𝑘2 so that

𝐷 𝑋1

𝛼 𝑋2

𝐷 𝑋3

𝑓1

𝑘1

𝑘2

𝑓3

=

𝐷 𝑋1

𝛼1

𝐷 𝑋2

𝛼2

𝐷 𝑋3

𝑓1

𝑓2

𝑓3

𝑘1

𝑘2

We say that D is spanlike if every 𝐷 satisfies the horizontal factor condition.

Theorem 5.3.1.6. Let D be a double category and let 𝐷 be an object of D satisfying the

horizontal factor condition. Then there is a representable double functor D(𝐷,−) : D →
Matrix defined as follows:

• For an object 𝑋, D(𝐷, 𝑋) is the set of horizontal arrows 𝐷 → 𝑋.

• For a horizontal 𝑔 : 𝑋 → 𝑌, D(𝐷, 𝑔) : D(𝐷, 𝑋) → D(𝐷,𝑌) is given by post-

composition with 𝑔: 𝑓 ↦→ 𝑓 | 𝑔.

• For a vertical 𝑘 : 𝑋 → 𝑌, we get the matrix of sets D(𝐷, 𝑘) : D(𝐷, 𝑋)×D(𝐷,𝑌) →
Set given by

( 𝑓1 , 𝑓2) ↦→


The set of squares

𝐷 𝑌

𝛼

𝐷 𝑌

𝑓1

𝑘

𝑓2


• For any square

𝑋1 𝑌1

𝛼

𝑌1 𝑌2

𝑘1

𝑔1

𝑘2

𝑔2

we define D(𝐷, 𝛽) to be the map of matrices given by post-composing with 𝛽.

That is,

D(𝐷, 𝛽)(𝛼) = 𝛼 | 𝛽.

Proof. We will show that this is a double functor. The horizontal component is functo-

rial since it is the functor ℎD → Set represented by 𝐷.

For vertical functoriality, we need to show that

D

(
𝐷,

𝑘1

𝑘2

)
�

D(𝐷, 𝑘1)
D(𝐷, 𝑘2)



236 CHAPTER 5. BEHAVIORS OF THE WHOLE FROM BEHAVIORS OF THE PARTS

for vertical arrows 𝑘1 : 𝑋1 → 𝑋2 and 𝑘2 : 𝑋2 → 𝑋3. There is always a map

D(𝐷, 𝑘1)
D(𝐷, 𝑘2)

→ D

(
𝐷,

𝑘1

𝑘2

)
given by taking two squares and composing them. That this map is a bĳection is a

restatement of the horizontal factor condition which we assumed that 𝐷 satisfied. The

right hand side is the D(𝐷, 𝑋1) × D(𝐷, 𝑋3)-matrix of sets which between 𝑓1 and 𝑓3 is

the set ∑
𝑓2∈D(𝐷,𝑋2)

D(𝐷, 𝑘1) 𝑓1 , 𝑓2 ×D(𝐷, 𝑘2) 𝑓2 , 𝑓3 .

So to say that for any 𝛼 ∈ D
(
𝐷, 𝑘1

𝑘2

)
there exists a unique triple ( 𝑓2 , 𝛼1 , 𝛼2)with 𝛼 =

𝛼1

𝛼2

is precisely to say that the map which composes two squares 𝛼1 and 𝛼2 into
𝛼1

𝛼2

is a

bĳection.

We then need to check vertical and horizontal functoriality for squares. Horizontal

functoriality of squares comes down to associativity of horizontal composition, and

vertical functoriality of squares comes down to the interchange law. □

Theorem 5.3.1.6 gives us Proposition 5.3.1.4 as a special case since the double cate-

gory ArenaT of arenas in any systems theory T is spanlike — every arena

(
𝐼
𝑂

)
satisfies

the horizontal factor condition.

Lemma 5.3.1.7. For any systems theory T, the double category ArenaT of arenas in T

is spanlike: every arena satisfies the horizontal factor condition.

Proof. Fix an arena

(
𝐼
𝑂

)
and suppose that we have a square like so:

𝛼 =

(
𝐼

𝑂

) (
𝐴−

𝐴+

)

(
𝐵−

𝐵+

)

(
𝐼

𝑂

) (
𝐶−

𝐶+

)

©­«
𝑓♭

𝑓

ª®¬
©­«
𝑤♯

𝑤

ª®¬

©­«
𝑣♯

𝑣

ª®¬
©­«
ℎ♭

ℎ

ª®¬



5.3. THE BIG THEOREM: REPRESENTABLE DOUBLY INDEXED FUNCTORS 237

Explicitly, this means that we have commuting squares

𝑂 𝐴+

𝐵+

𝑂 𝐶+

𝑓

ℎ

𝑤

𝑣

𝐼 𝐼

ℎ∗𝐶− 𝑓 ∗𝑤∗𝑣∗𝐶− 𝑓 ∗𝐴−

ℎ♭

𝑓 ∗(𝑤∗𝑣♯#𝑤♯)

𝑓♭ (5.5)

We then get a chart (
ℎ♭ # 𝑓 ∗𝑤∗𝑣♯

𝑓 # 𝑤

)
:

(
𝐼

𝑂

)
⇒

(
𝐵−

𝐵+

)
.

This chart fits into two squares like so:

(
𝐼

𝑂

) (
𝐴−

𝐴+

)

(
𝐼

𝑂

) (
𝐵−

𝐵+

)

(
𝐼

𝑂

) (
𝐶+

𝐶−

)

©­«
𝑓♭

𝑓

ª®¬
©­«
𝑤♯

𝑤

ª®¬©­«
ℎ♭# 𝑓 ∗𝑤∗𝑣♯

𝑓 #𝑤

ª®¬
©­«
𝑣♯

𝑣

ª®¬
©­«
ℎ♭

ℎ

ª®¬
The bottom half of the top square and the top half of the bottom square commute by

definition. The bottom half of the bottom square asks that 𝑓 # 𝑤 # 𝑣 = ℎ, but this is

precisely the bottom half of 𝛼. The top half of the top square asks that the following

diagram commute:

𝐼 𝐼

ℎ∗𝐶−

𝑓 ∗𝑤∗𝑣∗𝐶−

𝑓 ∗𝑤∗𝐵− 𝑓 ∗𝐴−

𝑓♭

ℎ♭

𝑓 ∗𝑤∗𝑣♯

𝑓 ∗𝑤♯

This is a rearrangement of the second square in Diagram 5.5.
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Because we have just rearranged the data of the big outer square 𝛼, this factorization

of 𝛼 is unique. □

As a corollary, Theorem 5.3.1.6 gives us a representable double functor

ArenaT
((

𝐼
𝑂

)
,−

)
: ArenaT →Matrix

in any systems theory T. So we can turn any lens in any systems theory into a matrix

in a way that preserves the composition of lenses.

Theorem 5.3.1.8. For any systems theory T and any arena

(
𝐼
𝑂

)
, there is a representable

double functor

ArenaT
((

𝐼
𝑂

)
,−

)
: ArenaT →Matrix.

5.3.2 How behaviors of systems wire together: representable doubly
indexed functors

We now come to the mountaintop. It’s been quite a climb, and we’re almost there.

We can now describe all the ways that behaviors of systems get put together when

we wire systems together. There are a bunch of laws governing how behaviors get put

together, and we organize them all into the notion of a lax doubly indexed functor. To

any system T in a systems theory T, we will give a lax doubly indexed functor

BehaveT : SysT → Vec.

Since behaviors of shape T are a sort of map out of T, we may think of BehaveT as

a representable lax doubly indexed functor.

Theorem 5.3.2.1. For any systems theory T and any system T in T, there is a lax doubly

indexed functor BehaveT : SysT → Vec which sends systems to their sets of T-shaped

behaviors.

ArenaT

Cat

Matrix

SysT

Vec

ArenaT
((

InT
OutT

)
,−

)
BehaveT

Let’s see what this theorem is really asking for while we construct it. As with many

of the constructions we have been seeing, the hard part is understanding what we are

supposed to be constructing; once we do that, the answer will always be “compose in

the appropriate way in the appropriate double category”.
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• First, we need Behave
0

T : Arena → Matrix which send an arena to the set of

charts from

(
InT
OutT

)
to that arena. It will send a chart to the function given by

composing with that chart, and it will send a lens to a matrix that describes the

wiring pattern in that lens. We’ve seen how to do this in Theorem 5.3.1.8:

Behave
0

T = Arena
((

InT
OutT

)
,−

)
This is the blueprint for how our systems will compose.

• Next, for any arena

(
𝐼
𝑂

)
, we need a functor

Behave

(
𝐼
𝑂

)
T

: Sys
(
𝐼
𝑂

)
→ Vec

(
Arena

((
InT
OutT

)
,
(
𝐼
𝑂

)))
which will send a system S with interface

(
𝐼
𝑂

)
to its set of behaviors of shape T,

indexed by their chart. That is, we make the following definition:

Behave

(
𝐼
𝑂

)
T
(S)( 𝑓♭

𝑓

) B Sys
(
𝑓♭
𝑓

)
(T, S).

This is functorial by horizontal associativity of squares in Arena.

• For any lens

(
𝑤♯

𝑤

)
:

(
𝐼
𝑂

)
⇆

(
𝐼′

𝑂′

)
, we need a natural transformation

Sys

(
𝐼

𝑂

)
Vec

(
Arena

((
InT
OutT

)
,
(
𝐼
𝑂

)))

Sys

(
𝐼′

𝑂′

)
Vec

(
Arena

((
InT
OutT

)
,
(
𝐼
𝑂

)))
Sys

(
𝑤♯

𝑤

)
Behave

(
𝐼
𝑂

)
T

Vec
(
Arena

((
InT
OutT

)
,

(
𝑤♯

𝑤

)))
Behave

(
𝑤♯

𝑤

)
T

Behave

(
𝐵−

𝐵+

)
T

This will take any behaviors of component systems whose charts compatible

according to the wiring pattern of

(
𝑤♯

𝑤

)
and wire them together into a behavior

of the wired together systems. In other words, this will be given by vertical

composition of squares in Arena. To see how that works, we need follow a

(
𝐼
𝑂

)
-

system S around this diagram and see how this natural transformation can be

described so simply. Following S around the top path of the diagram gives us

the following vector of sets, we first send S to the vector of sets(
𝑓♭
𝑓

)
:

(
InT
OutT

)
⇒

(
𝐼
𝑂

)
↦→ Sys

(
𝑓♭
𝑓

)
(T, S)
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=



(
StateT

StateT

) (
StateS

StateS

)

(
InT

OutT

) (
𝐼

𝑂

)

©­«
𝑇𝜙

𝜙

ª®¬
©­«
updateT

exposeT

ª®¬ ©­«
updateS

exposeS

ª®¬
©­«
𝑓 ♯

𝑓

ª®¬


We then multiply this by the matrix Arena

((
InT
OutT

)
,
(
𝑤♯

𝑤

))
to get the vector of sets

whose entries are pairs of the following form:

(
𝑔♭
𝑔

)
:

(
InT
OutT

)
⇒

(
𝐼′

𝑂′

)
↦→



(
InT

OutT

) (
𝐼

𝑂

)

(
InT

OutT

) (
𝐼′

𝑂′

)

©­«
𝑓♭

𝑓

ª®¬
©­«
𝑤♯

𝑤

ª®¬
©­«
𝑔♭

𝑔

ª®¬

,

(
StateT

StateT

) (
StateS

StateS

)

(
InT

OutT

) (
𝐼

𝑂

)

©­«
𝑇𝜙

𝜙

ª®¬
©­«
updateT

exposeT

ª®¬ ©­«
updateS

exposeS

ª®¬
©­«
𝑓♭

𝑓

ª®¬


On the other hand, following S along the bottom path has us first composing it

vertically with

(
𝑤♯

𝑤

)
and then finding the behaviors in it:

(
𝑔♭
𝑔

)
:

(
InT
OutT

)
⇒

(
𝐼′

𝑂′

)
↦→



(
StateT

StateT

) (
StateS

StateS

)

(
InT

OutT

) (
𝐼′

𝑂′

)

©­«
𝑇𝜙

𝜙

ª®¬
©­«
updateT

exposeT

ª®¬ ©­«
updateS

exposeS

ª®¬#©­«
𝑤♯

𝑤

ª®¬
©­«
𝑔♭

𝑔

ª®¬


Finally, we are ready to define our natural transformation from the virst vector of

sets to the second using vertical composition:

Behave

(
𝑤♯

𝑤

)
T
(S)( 𝑔♭

𝑔

) (□𝑤 , 𝜙) = 𝜙

□𝑤
.
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That this is natural for behaviors 𝜓 : S→ U in Sys
(
𝐼
𝑂

)
follows quickly from the

horizontal identity and interchange laws in Arena:

𝜙 | 𝜓
□𝑤

=
𝜙 | 𝜓

□𝑤 |
(
𝑤♯

𝑤

)
=

𝜙

□𝑤

������� 𝜓(
𝑤♯

𝑤

) .
• For any chart

(
𝑔♭
𝑔

)
:

(
𝐼
𝑂

)
⇒

(
𝐼′

𝑂′

)
, we need a square

Sys
(
𝐼
𝑂

)
Sys

(
𝐼′

𝑂′

)

Behave

(
𝑔♭
𝑔

)
T

Vec
(
Arena

((
InT
OutT

)
,
(
𝐼
𝑂

)))
Vec

(
Arena

((
InT
OutT

)
,
(
𝐼′

𝑂′

)))
Behave

(
𝐼
𝑂

)
T

Sys
(
𝑔♭
𝑔

)

Behave

(
𝐼′

𝑂′

)
T

Vec
(
Arena

((
InT
OutT

)
,

(
𝑔♭
𝑔

)))
This will take any behavior from S to U with chart

(
𝑔♭
𝑔

)
and give the function

which takes behaviors of shape T in S and gives the composite behavior of shape

T in U. That is,

Behave

(
𝑔♭
𝑔

)
T
(S,U)(𝜓) = 𝜙 ↦→ 𝜙 | 𝜓.

The naturality of this assignment follows from horizontal associativity in Arena.

Its a bit scary to see written out with all the names and symbols, but the idea is

simple enough. We are composing two sorts of things: behaviors and systems. If we

have some behaviors of shape T in our systems and their charts are compatible with a

wiring pattern, then we get a behavior of the wired together system. If we have a chart,

then behaviors with that chart give us a way of mapping forward behaviors of shape

T.

The lax doubly indexed functor laws now tell us some facts about how these two

sorts of composition interact.

• (Vertical Lax Functoriality) This asks us to suppose that we are wiring our systems

together in two stages. The law then says that if we take a bunch of behaviors

whose charts are compatible for the total wiring pattern and wire them together

into a behavior of the whole system, this is the same behavior we get if we first

noticed that they were compatible for the first wiring pattern, wired them to-

gether, then noticed that the result was compatible for the second wiring pattern,
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and wired that together. This means that nesting of wiring diagrams commutes

with finding behaviors of our systems.

• (Horizontal Functoriality) This asks us to suppose that we have two charts and a

behavior of each. The law then says that composing a behavior of shape T with

the composite of those behaviors is the same as composing it with the first one

and then with the second one.

• (Functorial Interchange) This asks us to suppose that we have a pair of wiring

patterns and compatible charts between them (a square in Arena). The law then

says that if we take a bunch of behaviors whose charts are compatable according to

the first wiring pattern, wire them together, and then compose with a behavior of

the second chart, we get the same thing as if we compose them all with behaviors

of the first chart, noted that they were compatible with the second wiring pattern,

and then wired them together.

Though it seems like it would be a mess of symbols to check these laws, they in

fact fall right out of the laws for the double categories of arenas and matrices, and the

functoriality of Proposition 5.3.1.4. That is, we’ve already built up all the tools we need

to prove this fact, we just need to finish proving that BehaveT is a lax doubly indexed

functor.

• (Vertical Lax Functoriality) Suppose we have composable lenses

(
𝑤♯

𝑤

)
:

(
𝐼1
𝑂1

)
⇆(

𝐼2
𝑂2

)
and

(
𝑢♯

𝑢

)
:

(
𝐼2
𝑂2

)
⇆

(
𝐼3
𝑂3

)
. We need to show that

Behave

(
𝑤♯

𝑤

)
#
(
𝑢♯

𝑢

)
T

=
©­«Behave

(
𝑢♯

𝑢

)
T

Sys
(
𝑤♯

𝑤

)ª®¬◦©­«VecArena
((

InT
OutT

)
,
(
𝑢♯

𝑢

))
Behave

(
𝑤♯

𝑤

)
T

ª®¬ .
This follows immediately from vertical associativity in Arena, once both sides

have been expanded out. Let S be a

(
𝐼1
𝑂1

)
-system, then

Behave

(
𝑤♯

𝑤

)
#
(
𝑢♯

𝑢

)
T

(S)(𝛼, 𝜙) = Behave

(
𝑤♯

𝑤

)
#
(
𝑢♯

𝑢

)
T

(S)
(
𝛽

𝛾
, 𝜙

)
by Proposition 5.3.1.1,

=
𝜙
𝛽
𝛾

=

𝜙
𝛽

𝛾

=
©­«Behave

(
𝑢♯

𝑢

)
T

Sys
(
𝑤♯

𝑤

)ª®¬ ◦ ©­«Arena
((

InT
OutT

)
,
(
𝑢♯

𝑢

))
Behave

(
𝑤♯

𝑤

)
T

ª®¬ (𝛾, 𝛽, 𝜙).
• (Horizontal Functoriality) This follows directly from horizontal associativity in

Arena.
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• (Functorial Interchange) This law will follow directly from interchange in the

double category of arenas. Let 𝛼 be a square in Arena of the following form:

𝛼 =

(
𝐴−

𝐴+

) (
𝐵−

𝐵+

)

(
𝐶−

𝐶+

) (
𝐷−

𝐷+

)

©­«
𝑓♭

𝑓

ª®¬
©­«
𝑗♯

𝑗

ª®¬ ©­«
𝑘♯

𝑘

ª®¬
©­«
𝑔♯

𝑔

ª®¬
We need to show that

Behave

(
𝑗♯

𝑗

)
T

���������
Sys(𝛼)

Behave

(
𝑔♭
𝑔

)
T

=
Behave

(
𝑓♭
𝑓

)
T

VecArena
((

InT
OutT

)
, 𝛼

)
���������Behave

(
𝑘♯

𝑘

)
T

(5.6)

We can see both sides as natural transformations of the signature

Sys
(
𝐴−

𝐴+

)
Sys

(
𝐵−

𝐵+

)
VecArena

((
InT
OutT

)
,
(
𝐴−

𝐴+

))
5.6 Sys

(
𝐷−

𝐷+

)
VecArena

((
InT
OutT

)
,
(
𝐶−

𝐶+

))
VecArena

((
InT
OutT

)
,
(
𝐷−

𝐷+

))
Behave

(
𝐴−

𝐴+

)
T

Sys
(
𝑓♭
𝑓

)

Sys
(
𝑘♯

𝑘

)

VecArena
((

InT
OutT

)
,

(
𝑗♯

𝑗

))
Behave

(
𝐷−

𝐷+

)
T

VecArena
((

InT
OutT

)
,

(
𝑔♭
𝑔

))

So, to show this equality holds, let’s start with a behavior 𝜓 ∈ Sys
(
𝑓♭
𝑓

)
(S,U)with

chart

(
𝑓♭
𝑓

)
. We need to show that passing this through the left side of Eq. (5.6)

equals the result of passing it through the right hand side. On both sides, the

result is an element of

VecArena
((

InT
OutT

)
,
(
𝑔♭
𝑔

))
(· · · , · · · )
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and is for that reason a function that takes in a pair of the following form:

(□𝑗 , 𝜙) =

©­­­­­­­­­­­­­­­­­«

(
InT

OutT

) (
𝐴−

𝐴+

)

(
InT

OutT

) (
𝐶−

𝐶+

)

©­«
𝑎♭

𝑎

ª®¬
©­«
𝑗♯

𝑗

ª®¬
©­«
𝑐♭

𝑐

ª®¬

,

(
StateT

StateT

) (
StateS

StateS

)

(
InT

OutT

) (
𝐴−

𝐴+

)

©­«
𝑇𝜙

𝜙

ª®¬
©­«
updateT

exposeT

ª®¬ ©­«
updateS

exposeS

ª®¬
©­«
𝑎♯

𝑎

ª®¬

ª®®®®®®®®®®®®®®®®®¬
The left hand side sends this pair to

Behave

(
𝑔♭
𝑔

)
T

(
Sys(𝛼)(𝜓)

) ©­«Behave

(
𝑗♯

𝑗

)
T
(□𝑗 , 𝜙)ª®¬

which equals, rather simply:

𝜙

□𝑗

���� 𝜓𝛼 .

The right hand side sends the pair to

Behave

(
𝑘♯

𝑘

)
T

©­«VecArena
((

InT
OutT

)
, 𝛼

) ©­«□𝑗 , Behave

(
𝑓♭
𝑓

)
T
(𝜓)(𝜙)ª®¬ª®¬

which equals, rather simply:

𝜙 | 𝜓
□𝑗 | 𝛼

.

That these two composites are equal is precisely the interchange law of a double

category.

While we have phrased this theorem in terms of systems theories, the proof uses

only the structure available to the doubly indexed category SysT : ArenaT → Cat itself.

We can therefore state this theorem entirely abstractly, which we record here.

Theorem 5.3.2.2. Let A : D → Cat be a doubly indexed category with D a spanlike

double category. Then for any T ∈ A(𝐷), there is a representable lax doubly indexed

functor

D

Cat

Matrix

A

Vec

D(𝐷,−)
A(T,−)
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5.3.3 Is the whole always more than the composite of its parts?

Unfortunately, BehaveT is lax (and not taut) for general T. This means that while

behaviors of component systems will induce behaviors of composite systems, it isn’t

necessarily the case that all behaviors of the composite arise this way.

But there is a simple condition we can put on T which will ensure that BehaveT is
taut, and therefore that we can recover the behaviors of wired together systems from

the behaviors of their components: we ask that T expose its entire state, which is to say

that exposeT is an isomorphism.

Theorem 5.3.3.1. Let T be a system in the systems theory T, and suppose that exposeT

is an isomorphism. Then the representable lax doubly indexed functor BehaveT is in

fact taut. Explicitly, for any lens

(
𝑤♯

𝑤

)
:

(
𝐼
𝑂

)
⇆

(
𝐼′

𝑂′

)
the natural transformation

Sys

(
𝐼

𝑂

)
Vec

(
Arena

((
InT
OutT

)
,
(
𝐼
𝑂

)))

Sys

(
𝐼′

𝑂′

)
Vec

(
Arena

((
InT
OutT

)
,
(
𝐼
𝑂

)))
Sys

(
𝑤♯

𝑤

)
Behave

(
𝐼
𝑂

)
T

Vec
(
Arena

((
InT
OutT

)
,

(
𝑤♯

𝑤

)))
Behave

(
𝑤♯

𝑤

)
T

Behave

(
𝐵−

𝐵+

)
T

is a natural isomorphism.

Many of the systems representing sorts of behavior which we saw in Chapter 3

expose their entire state. For example, the systems Time representing trajectories

(Example 3.3.0.7), Fix representing steady states (Example 3.3.0.8), and Clock𝑛 periodic

orbits with periodic parameters (Example 3.3.0.9). As examples of systems which

don’t expose their entire state, we had the systems which represent steady looking

trajectories and periodic orbits whose parameters aren’t periodic from Exercise 3.3.0.10.

Theorem 5.3.3.1 says that for the systems Time, Fix, and Clock𝑛 , we can recover the

behaviors of component systems from the behaviors of composite systems. As we

noted in Remark 3.2.2.5, the same cannot be said for steady looking trajectories.

Proof of Theorem 5.3.3.1. We recall that for a

(
𝐼
𝑂

)
-system S, the natural transformation
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Behave

(
𝑤♯

𝑤

)
T

goes from the vector of sets

(
𝑔♭
𝑔

)
:

(
InT
OutT

)
⇒

(
𝐼′

𝑂′

)
↦→



(
InT

OutT

) (
𝐼

𝑂

)

(
InT

OutT

) (
𝐼′

𝑂′

)

©­«
𝑓♭

𝑓

ª®¬
©­«
𝑤♯

𝑤

ª®¬
©­«
𝑔♭

𝑔

ª®¬

,

(
StateT

StateT

) (
StateS

StateS

)

(
InT

OutT

) (
𝐼

𝑂

)

©­«
𝑇𝜙

𝜙

ª®¬
©­«
updateT

exposeT

ª®¬ ©­«
updateS

exposeS

ª®¬
©­«
𝑓♭

𝑓

ª®¬


to the vector of sets

(
𝑔♭
𝑔

)
:

(
InT
OutT

)
⇒

(
𝐼′

𝑂′

)
↦→



(
StateT

StateT

) (
StateS

StateS

)

(
InT

OutT

) (
𝐼′

𝑂′

)

©­«
𝑇𝜙

𝜙

ª®¬
©­«
updateT

exposeT

ª®¬ ©­«
updateS

exposeS

ª®¬#©­«
𝑤♯

𝑤

ª®¬
©­«
𝑔♭

𝑔

ª®¬


The transformation itself is given by vertical composition:

Behave

(
𝑤♯

𝑤

)
T
(S)( 𝑔♭

𝑔

) (□𝑤 , 𝜙) = 𝜙

□𝑤
.

We’ll construct an inverse to this assuming that exposeT is an isomorphism. Suppose

we have a square

𝛼 =

(
StateT

StateT

) (
StateS

StateS

)

(
InT

OutT

) (
𝐼′

𝑂′

)

©­«
𝑇𝜙

𝜙

ª®¬
©­«
updateT

exposeT

ª®¬ ©­«
updateS

exposeS

ª®¬#©­«
𝑤♯

𝑤

ª®¬
©­«
𝑔♭

𝑔

ª®¬
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From this data, we can define a chart(
ℎ♭

ℎ

)
=

(
𝑔♭ # expose

−1∗
T

𝜙∗expose
∗
S
𝑤♯

expose
−1

T
# 𝜙 # exposeS

)
:

(
InT

OutT

)
⇒

(
𝐼

𝑂

)
.

It isn’t obvious that the top composite is well defined since we have 𝑔♭ : InT → 𝑔∗𝐼′

and expose
−1∗
T

𝜙∗expose
∗
S
𝑤♯

: expose
−1∗
T

𝜙∗expose
∗
S
𝑤∗𝐼′→ expose

−1∗
T

𝜙∗expose
∗
S
𝐼 and the

codomain of the first doesn’t appear to be the domain of the second. But the square 𝛼

tells us that 𝜙 # exposeS
# 𝑤 = exposeT

# 𝑔, so we have that

expose
−1

T
# 𝜙 # exposeS

# 𝑤 = expose
−1

T
# exposeT

# 𝑔 = 𝑔.

So the two maps really are composable.

Next, we note that the following is a square:

□ℎ =

(
InT

OutT

) (
𝐼

𝑂

)

(
InT

OutT

) (
𝐼′

𝑂′

)

©­«
ℎ♭

ℎ

ª®¬
©­«
𝑤♯

𝑤

ª®¬
©­«
𝑔♭

𝑔

ª®¬
since

ℎ # 𝑤 = expose
−1

T
# 𝜙 # exposeS

# 𝑤

= expose
−1

T
# exposeT

# 𝑔

= 𝑔 and

ℎ♭ = 𝑔♭ # ℎ∗𝑤♯
, by definition.

We see that the definition of

(
ℎ♭
ℎ

)
is basically forced on us by the commutation of

this diagram. Furthermore, we note that we have a square:

𝛽 =

(
StateT

StateT

) (
StateS

StateS

)

(
InT

OutT

) (
𝐼

𝑂

)

©­«
𝑇𝜙

𝜙

ª®¬
©­«
updateT

exposeT

ª®¬ ©­«
updateS

exposeS

ª®¬
©­«
ℎ♭

ℎ

ª®¬
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by the commutativity of 𝛼.

Finally, it remains to show that for any

(
ℎ♭
ℎ

)
fitting into these two squares □ℎ and 𝛽,

we have that (
ℎ♭

ℎ

)
=

(
𝑔♭ # expose

−1∗
T

𝜙∗expose
∗
S
𝑤♯

expose
−1

T
# 𝜙 # exposeS

)
.

From the bottom of 𝛽, we see that exposeT
# ℎ = 𝜙 # exposeS, which means that

ℎ = expose
−1

T
# 𝜙 # exposeS since exposeT is an isomorphism. From the top of □ℎ , we

see exactly that ℎ♭ = 𝑔♭ # ℎ∗𝑤♯
. □

Example 5.3.3.2. In the deterministic systems theory Det, consider the system Time of

Example 3.3.0.7: (
𝑡 ↦→ 𝑡 + 1

id

)
:

(
N

N

)
⇆

(
{tick}
N

)
.

This system exposes its entire state since exposeTime = id. A behavior of shape Time is

a trajectory. So, by Theorem 5.3.3.1, we get a doubly indexed functor:

ArenaDet

Cat

Matrix

SysDet

Vec

ArenaDet

((
1
N

)
,−

)
Traj

For any

(
𝐼
𝑂

)
-system S, we get a vector of sets(

𝑖
𝑜

)
↦→ Traj

(
𝑖
𝑜

) (S)
sending each chart

(
𝑖
𝑜

)
:

(
1
N

)
⇒

(
𝐼
𝑂

)
— which is to say sequences 𝑜 : N → 𝑂 and

𝑖 : N→ 𝐼 of inputs — to the set of trajectories 𝑠 : N→ S for that chart. These trajectories

are, explicitly, sequences which satisfy the equations

𝑠𝑡+1 = updateS(𝑠𝑡 , 𝑖𝑡)
exposeS(𝑠𝑡) = 𝑜𝑡 .

Theorem 5.3.3.1 tells us that trajectories in a composite system are families of tra-

jectories for each system which agree on all the information passed between the wires.

For example, consider the wiring diagram
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S

T

•

(5.7)

Let’s suppose that all wires carry real numbers. Then this wiring diagram can be

represented by the lens (
𝑤♯

𝑤

)
:

(
R

R × R

)
⊗

(
R × R
R

)
⇆

(
R × R
R

)
given by

𝑤((𝑎, 𝑏), 𝑐) = 𝑐

𝑤♯(((𝑎, 𝑏), 𝑐), (𝑥, 𝑦)) = (𝑥, (𝑏, 𝑦)).

Jaz: FINISH THIS.

Example 5.3.3.3. In a differential systems theory — for simplicity let’s say the Euclidean

differential systems theory Euc — the system

Time =

(
1

id

)
:

(
R1

R1

)
⇆

(
R0

R1

)
which expresses the differential equation

𝑑𝑠

𝑑𝑡
= 1

represents trajectories (see Example 3.5.2.5). As this system exposes its entire state,

Theorem 5.3.3.1 gives us a doubly indexed functor

ArenaEuc

Cat

Matrix

SysEuc

Vec

ArenaDet

((
1
N

)
,−

)
Traj
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5.4 Summary and Further Reading

In this chapter, we proved our main compositionality theorem relating the repre-

sentable behaviors of composite systems to the behaviors of component systems. This

theorem is a vast generalization of Spivak’s theorem that steady states of coupled

dynamical systems compose via matrix arithmetic [Spi15]. In categorical terms, we

constructed representable doubly indexed functors on spanlike doubly indexed cat-

egories. On the indexing category, such representable doubly indexed functors are

exactly Paré’s representable double functors [Par11].



Chapter 6

Dynamical System Doctrines

6.1 Introduction

Throughout this book so far, we seen dynamical systems modeled by state spaces

exposing variables and updating according to external parameters. This sort of dy-

namical system is lens-based — systems are themselves lenses, and they compose by

lens composition. We might describe them as parameter-setting systems, since we com-

pose these systems by setting the parameters of some according to the exposed state

variables of others.

There are many parameter-setting systems theories: deterministic (distrete, contin-

uous, measurable), differential (Euclidean, general), non-deterministic (possibilistic,

probabilistic, cost-aware, etc.). From each doctrine T, we constructed a doubly in-

dexed category SysT : ArenaT → Cat, indexed by the double category of arenas in the

doctrine T. This doubly indexed category organized the behaviors of the systems in

doctrine T (through the charts) and the ways that systems can be composed (through

the lenses).

But composing systems through lenses is not the only way to model systems. In

this section we will see two more ways of understanding what it means to be a system:

the behavioral approach to systems theory, which composes systems by sharing their

exposed variables, and the diagrammatic approach to systems theory, which composes

diagrams describing systems by gluing together their exposed parts. In the behavioral

approach (see Section 6.2), systems are understood as (variable) sets of behaviors, some

of which are exposed to their environment. These systems are composed by sharing
these exposed behaviors — that is, by declaring the behaviors exposed by some systems

to be the same. In the diagrammatic approach (see Section 6.3), systems are presented

by diagrams formed by basic constituent parts, some of which are exposed to their

environment. These systems are composed by gluing together their exposed parts.

In total, we will have three doctrines of dynamical systems — ways of thinking about

what a theory of systems could be, including how they are to be composed.

251
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Informal Definition 6.1.0.1. A doctrine of dynamical systems is a particular way to answer

the following questions about it means to be a systems theory:

• What does it mean to be a system? Does it have a notion of states, or of behaviors?

Or is it a diagram describing the way some primitive parts are organized?

• What should the interface of a system be?

• How can interfaces be connected in composition patterns?

• How are systems composed through composition patterns between their inter-

faces.

• What is a map between systems, and how does it affect their interfaces?

• When can maps between systems be composed along the same composition

patterns as the systems.

The parameter-setting doctrine which has been the focus of the book so far answers

these questions in the following way:

• A system consists of a notion of how things can be, called the states, and a notion

of how things will change given how they are, called the dynamics. In total, a

system is a lens of the form

(
updateS
exposeS

)
:

(
𝑇StateS
StateS

)
⇆

(
InS
OutS

)
.

• The dynamics of a system can invovle certain parameters, and expose some vari-

ables of its state. The admissible parameters can depend on the variables being

exposed. In total, an interface for a system is an arena

(
InS
OutS

)
.

• A composition pattern between interfaces says which exposed variables will be

passed forward, and how the internal parameters should be set according to the

external parameters and the exposed variables. That is, a composition pattern is

a lens.

• Systems are composed by setting the parameters of some according to the exposed

variables of others. This is accomplished by lens composition.

• A map between systems is a function of state which respects observable behavior;

it affects the interfaces as a chart.

• When we have a square in the double category of arenas between charts and

lenses, we may compose maps of systems — behaviors — along the composition

patterns represented by the lenses.

Formally, we have organized the answers to these questions in our definition of the

doubly indexed category SysT : ArenaT → Cat in a given doctrine T. The doctrine

further specifies these answers along the lines of Informal Definition 1.1.0.2. In general,

there may be many systems theories in any doctrine, further specifying what it really

means to be a system within that systems theory. At the end of the day, however, we

can expect to get a doubly indexed category, indexed by a double category of interfaces

and sending each interface to the category of systems with that interface.

We will not give a fully formal definition of dynamical systems doctrine in this

book. Nevertheless, we can give a useful, semi-formal approximation: a doctrine is

any systematic way to produce doubly indexed categories of systems.
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Semi-formal Definition 6.1.0.2. A doctrine of dynamical systems is a systematic way to

produce doubly indexed categories of systems. As a first pass, we might say a doctrine

of composition 𝔓 is a functor

Sys𝔓 : Doctrine𝔓 → DblIx

from a category of 𝔓-systems theories to the category of doubly indexed categories. To

a 𝔓-doctrine T, this associates a doubly indexed category

Sys𝔓T : Interface𝔓T → Cat

indexed by a double category Interface𝔓T of interfaces in the𝔓-doctrineT. This answers

the questions of Informal Definition 6.1.0.1 in the following ways:

• A system is an object of the category Sys𝔓T (𝐼).
• The interface of a system is an object of the double category Interface𝔓T .

• The composition patterns between interfaces are the vertical maps of Interface𝔓T .

• The systems are composed along a composition pattern 𝑐 : 𝐼1 → 𝐼2 by the functor

Sys𝔓T (𝑐) : Sys𝔓T (𝐼1) → Sys𝔓T (𝐼2).
• A map between systems Sys𝑆1 ∈ Sys𝔓T (𝐼1) and Sys𝑆2 ∈ Sys𝔓T (𝐼2)which acts as 𝑓 :

𝐼1 → 𝐼2 (a horizontal map in Interface𝔓T ) is an element of Sys𝔓T ( 𝑓 )(Sys𝑆1 , Sys𝑆2).
• Maps can be composed along the same composition patterns as systems when

there is a square 𝛼 of the appropriate signature in Interface𝔓T ; the composite

morphism is Sys𝔓T (𝛼)( 𝑓 ).

Remark 6.1.0.3. We take the term doctrine from Lawvere. Lawvere used the term “doc-

trine” in categorical logic to describe the various ways to be a logical theory. For

example, some theories are first order theories, expressed in first order logic. Some

are algebraic theories, expressed using only equalities between function systems. The

different sorts of theories — first order, higher order, algebraic, etc. — are the doctrines.
We can see the following table of analogies:

Level -1 0 1 2 3

Logic property element model theory doctrine

Systems Theory constraint behavior system theory doctrine

The “level” here is the categorical level, where a set is a 0-category, a category is a

1-category, and a 2-category — with maps between its objects and maps between those

maps — is level 2. There is a set of behaviors in a system, a category of systems in a

given theory (or, really, a doubly indexed category), and a 2-category of theories in a

given doctrine (though we only described its 1-categorical structure in this book).

For nerds who like this sort of thing, I would like to emphasize that this level is not
the truncation level. If instead of sets we were working with homotopy types, then

level 0 would still be elements, and level −1 would be identifications between these
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elements, and −2 identifications between these identifications, and so on. In general,

the negative levels would have (increasingly abelian) cohomological information about

the positive levels.

So far in this book, we have been working in the parameter-setting doctrine given

by lens composition.

Definition 6.1.0.4. The parameter-setting doctrine 𝔓aramSetting consists of the functor

Sys𝔓aramSetting
: Doctrine𝔓aramSetting → DblIx defined in Theorem 4.5.2.2

In this chapter, we will meet two other doctrines: the behavioral approach to systems

theory which is characterized by span composition which we will call the variable sharing
doctrine, and the diagrammatic approach to systems theory which is characterized by

cospan composition which we will call the port-plugging doctrine. These three doctrines

— parameter-setting, variable-sharing, and port-plugging — capture a wide range of

categorical systems theories in use. They are, however, by no means exhaustive.

6.2 The Behavioral Approach to Systems Theory

The parameter setting (lens-based) ways of thinking about systems are very useful

for the design of systems; we give a minimal set of data (expose and update) which

in principle determines all behaviors, though it might take some work to understand

what behaviors are actually in the system once we have set it up. But for the analysis of

dynamical systems, we seek to prove properties about how systems behave. It helps if

we already know how a system behaves.

In the behavioral approach to systems theory, pioneered by Jan Willems, we take

“behavior” as a primitive. In its most basic formulation, the behavioral approach to

systems theory considers a system S to have a set B(𝑆) of state variables or “behaviors”.

The system also exposes some of these state variables in a function exposeS : BS → VS

to a set VS of possible values for these exposed variables.

In other words, we can see the behavioral approach to systems theory as taking place

in the doubly indexed category Vec : Matrix→ Cat (or, as we’ll see, some variants of

it). An interface is a set𝑉 of possible values, and a system is a vector 𝐵𝑣 of sets varying

over 𝑣 ∈ 𝑉 — the behaviors in which the exposed variables take that given value. This

might sound a bit different from the idea of a function exposeS : BS → VS, but we can

define the set 𝐵𝑣 to be expose
−1

S
(𝑣), and pass between these two notions. That is, we

are making use of the equivalence between the double categories of matrices and the

double categories of spans explored in Section 3.4.2 to think of vectors of sets of length

𝑉 as functions into 𝑉 , and to think of matrices of sets as spans.

Example 6.2.0.1. Consider the Lotka-Volterra predator prey model LK of Section 1.2.2
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which is given by the following system of differential equations:{
𝑑𝑟
𝑑𝑡

= bRabbits · 𝑟 − 𝑐1 𝑓 𝑟
𝑑𝑓

𝑑𝑡
= 𝑐2𝑟 𝑓 − dFoxes · 𝑓

Here, 𝑟 is the population of rabbits and 𝑓 is the population of foxes. In Example 1.2.2.4,

we saw how to represent this as a differential system

(
R2

R2

)
⇆

(
R2

1

)
with exposeLK =!

the terminal map and

updateRabbits(𝑟, (bRabbits , dRabbits)) = bRabbits · 𝑟 − dRabbits · 𝑟.

For the behavioral approach, we would apply the doubly indexed functor taking tra-

jectories (from Example 5.3.3.3) to get the behavioral point of view on the system LK:

Behave

(
R2

R2

)
Time
(LK) ∈ Vec

(
ArenaEuc

((
1
R

)
,
(
R2

R2

)))
.

In other words, the set BLK of behaviors is the set of trajectories together with their

charts in LK, and VLK is the set of charts for those trajectories — that is, parameters

varying in time. We can calculate this from the definitions in Theorem 5.3.2.1:

VLK = ArenaEuc

((
1
R

)
,
(
R2

1

))
=

{(
(bRabbits , dFoxes)

!

)
:

(
1

R

)
⇒

(
R2

1

)}
= {((bRabbits , dFoxes)) : R→ R4}.

BLK =



(
R

R

) (
R2

R2

)

(
1

R

) (
R2

1

)

©­«
( 𝑑𝑟
𝑑𝑡
,
𝑑𝑓

𝑑𝑡
)

(𝑟, 𝑓 )
ª®¬

©­«
1

id

ª®¬ ©­«
updateLK

exposeLK

ª®¬
©­«
(bRabbits ,dFoxes)

!

ª®¬


=

{
((𝑟, 𝑓 ), (bRabbits , dFoxes)) : R→ R4

�����
{
𝑑𝑟
𝑑𝑡

= bRabbits · 𝑟 − 𝑐1 𝑓 𝑟
𝑑𝑓

𝑑𝑡
= 𝑐2𝑟 𝑓 − dFoxes · 𝑓

}
.
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and the map BLK → VLK is the projection exposing the parameters:

((𝑟, 𝑓 ), (bRabbits , dFoxees)) ↦→ (bRabbits , dFoxees).

Remark 6.2.0.2. Note that the parameters of the original differential system LK are

considered as exposed variables of state in the behavioral approach. This is because the

behavioral approach composes systems by setting exposed variables equal to eachother,

so the parameters must be considered as exposed variables so that they can be set equal

to other variables.

In this section, we’ll a bit of how the behavioral approach to systems theory works,

and why we might want to do it. We’ll begin with the main idea in Section 6.2.1. Then,

in Section 6.2.2, we’ll see that in the behavioral approach, there is a different sort of

undirected wiring diagram which is used to compose systems

S1

S2

S3

S4

The idea of these bubble diagrams is that each wire carries an exposed variable of the

behaviors of each system. An connection between wires expresses an equality of the

variables carried on them. The wiring diagram as a whole shows how the systems

in it share their variables. If lens-based systems are all about setting parameters, the

behavioral approach to systems theory using spans is all about sharing variables.

Just as the wiring diagrams for lens based systems are the lenses in categories of

arities, the wiring diagrams for the span-based behavioral approach are spans in the

category of arities — cospans of finite sets.

6.2.1 The idea of the behavioral approach

In the behavioral approach to systems theory, a system is a set (or variable set, see

Section 6.2.3) of behaviors of the system. A system exposes some variables of its behav-

iors. We can draw a behavioral system as a blob with wires dangling out of it which

we imagine are carrying the exposed variables. For example, the following system S

exposes three variables:

S

As we have seen in Theorem 5.3.2.1, we can get behavioral systems for any type

of behavior in any doctrine. One benefit of the behavioral approach is that all of

these different systems theories can be composed on the same footing: they’re all just

behavioral systems.
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Consider the following example borrowed from Willems’ [Wil07]. We consider a

square bucket of water with two pipes at the bottom through which the water can flow:

Bucket1 = ℎ1

𝑝11

𝑓11

𝑝12

𝑓12

The variable behaviors here are the pressures 𝑝11 and 𝑝12, the flows 𝑓11 and 𝑓12, and the

height of the water ℎ1. We suppose that these quantities are related in the following

ways:

𝑑ℎ1

𝑑𝑡
= 𝐹1(ℎ1 , 𝑝11 , 𝑝12)

𝑓11 = 𝐻11(ℎ1 , 𝑝11)
𝑓12 = 𝐻12(ℎ1 , 𝑝12)

for some functions 𝐹1, 𝐻11, and 𝐻12. Therefore, the set of behaviors is the set real

valued functions of time which satisfy these laws:

BBucket1 =


(ℎ1 , 𝑓11 , 𝑓12 , 𝑝11 , 𝑝12) : R→ R5

���������
𝑑ℎ1

𝑑𝑡
= 𝐹1(ℎ1 , 𝑝11 , 𝑝12)

𝑓11 = 𝐻11(ℎ1 , 𝑝11)
𝑓12 = 𝐻12(ℎ1 , 𝑝12)


(6.1)

We will suppose that we will only pump water to and from the bucket through the

pipes at the bottom. This means that we will only expose the variables concerning

those pipes.

VBucket1 = (R4)R

and where

exposeBucket1
(ℎ1 , 𝑓11 , 𝑓12 , 𝑝11 , 𝑝12) = ( 𝑓11 , 𝑓12 , 𝑝11 , 𝑝12).

We can bubble up the Bucket1 system as the following bubble diagram:

Bucket1

𝑝12𝑝11

𝑓11 𝑓12

Each wire carries a variable element of R→ R, and the Bucket1 system exposes four of

such variables.
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Now, suppose we had another bucket Bucket2, governed by a similar set of variables

satisfying a similar set of laws, but with functions 𝐹2, 𝐻21, and 𝐻22 instead.

Bucket2 = ℎ2

𝑝21

𝑓22

𝑝22

𝑓21

= Bucket2

𝑝21𝑝22

𝑓21 𝑓22

Suppose we connect the two buckets up by the pipes at the bottom:

Buckets = ℎ1

𝑝11

𝑓11

ℎ2

𝑝22

𝑓22

To express this combined system, we need that the pressures in the connected pipes to

be equal (since they are now one pipe), and we need the flows to be opposite (since any

flow out of one bucket goes into the other). That is, we need 𝑝12 = 𝑝21 and 𝑓12 + 𝑓21 = 0.

All in all, the combined system has behaviors

BBuckets =


(ℎ1 , 𝑓11 , 𝑓12 , 𝑝11 , 𝑝12) : R→ R5

(ℎ2 , 𝑓21 , 𝑓22 , 𝑝21 , 𝑝22) : R→ R5

��������������

𝑑ℎ𝑖

𝑑𝑡
= 𝐹𝑖(ℎ𝑖 , 𝑝𝑖1 , 𝑝𝑖2)

𝑓𝑖1 = 𝐻𝑖1(ℎ𝑖 , 𝑝𝑖1)
𝑓𝑖2 = 𝐻𝑖2(ℎ𝑖 , 𝑝𝑖2)
𝑝12 = 𝑝21

0 = 𝑓12 + 𝑓21


(6.2)

Meanwhile, the only variables which are exposed by Buckets are the two remaining

open pipes, so

VBuckets = R→ R4

exposeBuckets

(
(ℎ1 , 𝑓11 , 𝑓12 , 𝑝11 , 𝑝12)
(ℎ2 , 𝑓21 , 𝑓22 , 𝑝21 , 𝑝22)

)
= ( 𝑓11 , 𝑓22 , 𝑝11 , 𝑝22).

We can express the pattern of interconnection between Bucket1 and Bucket2 as a
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bubble diagram to see precisely howBuckets arises as a composition of the two systems:

Buckets

𝑝22𝑝11

𝑓11 𝑓22

=

Bucket1

+

Bucket2

0

(6.3)

When the wires are connected in this diagram, they express an equality between

their exposed variables. The top connection signifies that 𝑝12 = 𝑝21. The bubbled up +
signifies a relation (other than equality): it says that the sum of the variables on the top

two wires equals the third wire. We set that third wire to be constant at 0, so in total

we get the relation that 𝑓12 + 𝑓21 = 0.

We can analyze this composition of the systems Bucket1 and Bucket2 in terms of the

doubly indexed category Vec : Matrix→ Cat, or rather the equivalent doubly indexed

category Set/(−) : Span(Set) → Cat. To see how this works, let’s remember how we

compose lens based systems in a given doctrine T.

Let’s compose theClock andMeridian systems into theClockWithDisplay system from

Example 1.3.2.5.

Meridian

Clock

ClockWithDisplay

a.m./p.m.

Hour

=

Meridian

Clock

Meridian ⊗ Clock(
𝑤♯

𝑤

)

a.m./p.m.

Hour
(6.4)

We begin with Clock, which is in the category SysDet

(
1

Hour

)
of deterministic sys-

tems with interface

(
1

Hour

)
, and Meridian, which is in the category SysDet

(
Hour

a.m./p.m.

)
of

deterministic systems with interface

(
Hour

a.m./p.m.

)
. We then form their parallel product
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Meridian ⊗ Clock, which is in SysDet

(
1×Hour

a.m./p.m.×Hour

)
. The wiring diagram itself

(
𝑤♯

𝑤

)
a.m./p.m.

Hour
(6.5)

is a lens (
𝑤♯

𝑤

)
:

(
1 × Hour

a.m./p.m. × Hour

)
⇆

(
1

a.m./p.m. × Hour

)
.

That is, it is a vertical arrow in the double category ArenaDet of arenas in the deter-

ministic doctrine. The doubly indexed category SysDet
: ArenaDet → Cat furnishes us

with a functor

SysDet

(
𝑤♯

𝑤

)
: SysDet

(
1 × Hour

a.m./p.m. × Hour

)
→ SysDet

(
1

a.m./p.m. × Hour

)

Despite its formidible name, this functor is just given by composing in ArenaDet with

the lens

(
𝑤♯

𝑤

)
. We then apply this functor toMeridian⊗Hour to get the composite system

ClockWithDisplay:

ClockWithDisplay = SysDet

(
𝑤♯

𝑤

)
(Meridian ⊗ Hour).

This story is mirrored in the behavioral approach to systems theory, except instead

of working with the doubly indexed category SysT : ArenaT → Cat, we work in the

doubly indexed category Vec : Matrix → Cat — or, rather, the equivalent doubly

indexed category Set/(−) : Span(Set) → Cat.

We begin with the systems Bucket1 and Bucket2, both in Set/(R4)R; that is, Bucket1

is identified with the map exposeBucket1
: BBucket1 → (R4)R, and the same for Bucket2.

We then form the parallel product of these systems, which in this case is given by their

cartesian product

exposeBucket1
× exposeBucket2

: BBucket1 × BBucket2 → (R4)R × (R4)R



6.2. THE BEHAVIORAL APPROACH TO SYSTEMS THEORY 261

which is an object of Set/((R4)R × (R4)R). Now, the wiring diagram

𝑊 = +

0

𝑎1

𝑎2 𝑎3

𝑎4

𝑎5

𝑎6

𝑎7

𝑎8

may be described as a span of sets,

𝑊

(R4)R × (R4)R (R4)R

𝑤1 𝑤2

which is to say a vertical arrow in Span(Set). We’ll explain how bubble diagrams

correspond to spans in a more systematic way in Section 6.2.2, but for now we can

define𝑊 as follows:

𝑊 =

{
(𝑎𝑖)1≤𝑖≤8 : R→ R8

����� 𝑎2 + 𝑎3 = 𝑎4

𝑎4 = 0

}
(6.6)

𝑤1((𝑎𝑖)1≤𝑖≤8) = ((𝑎6 , 𝑎2 , 𝑎5 , 𝑎1), (𝑎3 , 𝑎8 , 𝑎1 , 𝑎7))
𝑤2((𝑎𝑖)1≤𝑖≤8) = (𝑎6 , 𝑎7 , 𝑎5 , 𝑎8)

We then compose Bucket1 and Bucket2 into the composite Buckets by applying

Vec(𝑊) to Bucket1 × Bucket2:

Buckets = Vec(𝑊)(Bucket1 × Bucket2).

This means composing with 𝑊 in the category of spans. Recall that we can see the

map exposeBucket1
× exposeBucket2

: BBucket1 ×BBucket2 → (R4)R × (R4)R as a span from 1

to (R4)R × (R4)R. Composing with 𝑊 therefore means we have the following pullback

diagram:

BBuckets

BBucket1 × BBucket2 𝑊

(R4)R × (R4)R (R4)R

𝑤1 𝑤2

exposeBucket1
× exposeBucket2

⌜ exposeBuckets

(6.7)
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Quite explicitly, this defines BBuckets to be the set

BBuckets =



(ℎ1 , 𝑓11 , 𝑓12 , 𝑝11 , 𝑝12) : R→ R5

(ℎ2 , 𝑓21 , 𝑓22 , 𝑝21 , 𝑝22) : R→ R5

(𝑎𝑖)1≤𝑖≤8 : R→ R8

����������������������

𝑑ℎ𝑖

𝑑𝑡
= 𝐹𝑖(ℎ𝑖 , 𝑝𝑖1 , 𝑝𝑖2)

𝑓𝑖1 = 𝐻𝑖1(ℎ𝑖 , 𝑝𝑖1)
𝑓𝑖2 = 𝐻𝑖2(ℎ𝑖 , 𝑝𝑖2)

𝑎2 + 𝑎3 = 𝑎4 𝑎4 = 0

𝑝11 = 𝑎5 𝑓11 = 𝑎6

𝑝12 = 𝑎1 𝑓12 = 𝑎2

𝑝21 = 𝑎1 𝑓21 = 𝑎3

𝑝22 = 𝑎7 𝑓22 = 𝑎8



(6.8)

At first glance, this is quite a bit larger than the definition ofBBuckets we gave in Eq. (6.2).

But most of the equations here are setting the 𝑓 s and 𝑝s from each Bucket𝑖 to be equal

to the 𝑎s coming form the wiring diagram 𝑊 . When the dust has settled, the two

definitions are equivalent — which is to say more precisely that they are isomorphic in

the category Vec((R4)R).

Exercise 6.2.1.1. Describe explicitly the isomorphism between the definitions of BBucket

in Eq. (6.2) and Eq. (6.8). Check that this isomorphism commutes with the two defini-

tions of exposeBuckets as well. ♢

A crucial feature of the behavioral approach to systems theory is that constraints on

system behaviors are treated at the same level as the systems themselves. Suppose we

want to constrain the system Buckets so that the water flows from left to right. That is,

we want 𝑓11 > 0 and 𝑓22 < 0. These constraints give rise to a subset C of the set (R2)R:

C = {( 𝑓11 , 𝑓22) | 𝑓11 > 0 and 𝑓22 < 0}. (6.9)

We can consider the subset C of (R4)R as an object of Set/(R4)R by equipping it with

the inclusion C ↩→ (R4)R. We can bubble up this constraint just like a system (though

to emphasize that we are thinking of it as a constraint and not as a system, we will not

fill the bubble with blue):

C

𝑓11 𝑓22

To express the system Buckets constrained so that the inequalities 𝑓11 > 0 and 𝑓22 < 0
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hold, we can use another bubble diagram:

BucketsConstrained := Buckets

C

This is a new system with interface (R2)R. Suppose we want to ask if this constraintC

is sufficient to ensure that the pressures on the pipes (the remaining exposed variables)

are within certain bounds [𝑏𝑖0 , 𝑏𝑖1]. We can express these constraints P on pressure as

a subset of (R2)R:

P = {(𝑝11 , 𝑝22) | 𝑏10 ≤ 𝑝11 ≤ 𝑏11, and𝑏20 ≤ 𝑝22 ≤ 𝑏21} ↩→ (R4)R.

The question of whether the constrained system BucketsConstrained satisfies the con-

straints P is then the question of whether there is a map 𝜙 : BucketsConstrained→ P in

Set/(R4)R:

BucketsConstrained P

(R2)R

𝜙

(6.10)

The map 𝜙 is a function of all the state variables of BucketsConstrained, but the com-

mutativity of Eq. (6.10) says that it must be given by

𝜙(. . . , 𝑝11 , . . . , 𝑝22 , . . .) = (𝑝11 , 𝑝22).

Therefore, the existence of 𝜙 is the same thing as the proposition that 𝑝11 is between 𝑏10

and 𝑏11 and the same for 𝑝22 — that is, the proposition that BucketsConstrained satisfies

the constraint P.

The question of devising such a constraint C (or, even better, a system which im-

plements this constraint) for a system Buckets so that the constrained system admits a

map to another constraint P is known as a control problem.

All of our variables in the previous examples were variables of time. This is very

common for behaviors, especially those coming from differential systems theories.

Instead of having all our sets be 𝐴R for an 𝐴 varying in time 𝑡 ∈ R, we could bake in

this variation into time into our notion of set itself. That is, we can work in a category of

variable sets, or sheaves. In such a category, the set 𝐴 would already include, implicitly,

the variation in time. The sheaf theoretic setting for the behavioral appraoch to systems

theory is explored in [SSV16] and [SS19]; we will summarize it in Section 6.2.3, and
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show that trajectories in the general differential doctrine Diff (Definition 3.5.2.23) land

in sheaves over time intervals.

Though we have been describing the behavioral approach to systems theory as

taking place within the doubly indexed category Set/(−) : Span(Set) → Cat, we can

do it in any category that allows us to compose spans — namely, and category with

finite limits. Just like we had different theory of dynamical system for lens-based

systems, we can see each category with finite limits as a doctrine for the behavioral

approach. We will call these behavioral systems theories.

Definition 6.2.1.2. A doctrine for the behavioral approach or a behavioral doctrine is a cate-

gory C with finite limits.

The variable sharing doctrine of composition 𝔙ariableSharing which encapsulates

the behavioral approach to systems theory is the functor which sends each behavioral

doctrine C to the doubly indexed category of systems in the behavioral doctrine C:

BSysC := C/(−) : Span(C) → Cat

This is defined as the vertical slice construction applied to the inclusion 1 : 1→ Span(C)
of the terminal object of C:

BSysC := 𝜎(1 : 1→ Span(C)).

This definition of the variable sharing doctrine answers the questions of Informal

Definition 6.1.0.1 in the following ways:

• A system is a notion of behavior BSys𝑆 together with a function exposing its

variables exposeS : BSys𝑆 → 𝐼.

• An interface is a codomain 𝐼 for the exposed variables.

• Interfaces are connected in composition patterns given by spans.

• Systems are composed by sharing variables — that is, by setting their exposed

variables equal according to the composition pattern. This is accomplished via

span composition.

• A map between systems is a function of their behaviors which respects their

exposed variables. This acts on interfaces via a function that tells us how to

translate exposed variables of the first system to exposed variables of the second.

• Maps between systems can be composed along composition patterns when we

have a square in the double category of spans.

We will discuss these points in more detail in Section 6.2.2.

So far, we have only seen the behavioral doctrine Set of sets, but in Section 6.2.3

we will see a behavioral doctrine of sheaves over time intervals. Though we won’t see

as many different examples of behavioral systems theories as we have for parameter-

setting systems theories, the notion can help us clarify the basic ideas of the behavioral

approach: it’s all about spans, much in the way that parameter-setting theories are all

about lenses.
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6.2.2 Bubble diagrams as spans in categories of arities

All the way back in Section 1.3.3, we saw that wiring diagrams are lenses in special

categories: the free cartesian categories. We needed a cartesian category to describe

the notion of lens given in Definition 1.3.1.1. We can make an analogy here: to describe

the behavioral approach to systems theory, we use spans which require finite limits.

It stands to reason that we should expect our bubble diagrams for the behavioral

approach to be spans in free finitely complete categories. We’ll see that this is precisely

the case, although we will want to restrict to a certain class of “nice” spans.

Before we see a formal definiton of bubble diagram, let’s give an informal defini-

tion.

Informal Definition 6.2.2.1. A bubble diagram is a diagram which consists of a num-

ber of inner bubbles drawn within an outer bubble, each with some ports. There are

furthermore links, which are drawn as small dots. The bubbles are wired together by

connecting to the links:

1. Every port on an inner bubble is wired to a unique link, and every link is wired

to some inner port.

2. Every port on the outer bubble is wired to a unique link, and a link is wired to at

most one outer port.

3. No two links are connected.

The category of bubble diagrams has as its objects the bubbles and as its morphisms

the bubble diagrams. Bubble diagrams are composed by filling the inner bubbles with

other bubble diagrams, the erasing the middle layer of bubbles, and coalescing any

connected links into a single link.

Bubbles Bubble Diagrams Composition by nesting

(6.11)

Composition of bubble diagrams is given by nesting and then coalescing links, so
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that no two links are connected in a diagram.

⇝

(6.12)

We can formalize these diagrams as certain spans in the free finitely complete

category. Luckily, we already know what the free finitely complete category is; it

turns out to be the same as the free cartesian category, the category Arity of arities

(Definition 1.3.3.2)!

Proposition 6.2.2.2. For a set T of types, the category ArityT of arities typed in T is

the free finitely complete category on the set of objects T. That is, for any finitely complete

category C and function 𝐶(−) : T → C, there is a functor ev𝐶 : ArityT → C which

preserves finite limits, and this functor is unique up to a unique natural isomorphism.

Proof Sketch. Since C is finitely complete, it is in particular cartesian. Therefore, we

get a unique cartesian functor ev𝐶 : ArityT → C. We can then check that this functor

preserves finite limits in addition to products; this is ultimately because pullbacks of

product projections are given by other product projections. □

Recall that the category of arities is equivalent to the opposite of the category of

finite sets (Proposition 1.3.3.3). A span in the category of arities is a diagram

X
𝐿

X
𝐼

X
𝑂

𝑖∗ 𝑜∗

where 𝐼, 𝐿, and𝑂 are finite sets and 𝑖 : 𝐼 → 𝐿 and 𝑜 : 𝑂 → 𝐿 are functions. We interpret

such a span as a bubble diagram in the following way:

• The set 𝐼 is the set of inner ports on any of the inner bubbles, the set 𝑂 is the set

of outer ports on the outer bubble, and the set 𝐿 is the set of links.

• The function 𝑖 : 𝐼 → 𝐿 sends each inner port to the link it is connected too, and

the function 𝑜 : 𝑂 → 𝐿 sends each outer port to the link it is connected to.

If we have multiple inner bubbles, then we take a span with domain the cartesian

product X
𝐼1 × · · · × X

𝐼𝑛
, so that 𝐼 = 𝐼1 + · · · + 𝐼𝑛 .
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Jaz: Diagram from D.Spivak.

𝐼1 𝐼2

𝐼3

2

𝑡

1

1
𝑢3

2

𝑣

4

3

𝑤
1

4

𝑥

1

2

𝑦

2

𝑠

3

𝑧

6

5

1 2 3 4 1 2 1 2 3

𝐼1 𝐼2 𝐼3

𝑠 𝑡 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧

1 2 3 4 5 6

𝑂

(6.13)

Note what can happen if we use just any old span in Arity: we can have “passing

wires”, like the wire connecting outer port 1 with outer port 2 in Eq. (6.13), and we

can have dangling links like 𝑠 which aren’t connected to anything. These are drawn in

red above. This sort of loosey-goosey diagram is well known; it is an undirected wiring
diagram.

Definition 6.2.2.3. An undirected wiring diagram is a span in the category Arity of arities.

Equivalently, it is a cospan of finite sets. A span

X
𝐿

X
𝐼1 × · · · × X

𝐼𝑛
X
𝑂

𝑖∗ 𝑜∗

is an undirected wiring diagram with 𝑛 inner bubbles, with bubble 𝑖 having the finite

set 𝐼𝑖 of ports, with the finite set of links 𝐿, and the outer bubble having finite set of

ports 𝑂. Informally, these satisfy the laws:

1. Every inner port 𝑝 ∈ 𝐼𝑖 is wired to a unique link 𝑖(𝑝)
2. Every outer port 𝑝 ∈ 𝑂 is wired to a unique link 𝑜(𝑝)
3. No two links are wired together.

However, these external connections and dangling wires tend to clutter up the

works. A bubble diagram is an undirected wiring diagram without these cluttering

bits. We enforce the extra two parts of the bubble diagram laws — that every link is

connected to some inner port and that a link is connected to at most one outer port —

by asking that the left leg 𝑖 of the span is surjective while the right leg 𝑜 of the span is

injective. That 𝑖 is surjective means that every link is wired to some inner port. That 𝑜

is injective means that each link is wired to at most one outer port.

Definition 6.2.2.4. A bubble diagram is a span in the category Arity of arities whose left

leg is surjective (as a finite set map) and whose right leg is injective. Equivalently, it is
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a cospan of finite sets where the left leg is surjective and the right leg is injective. A

span

X
𝐿

X
𝐼1 × · · · × X

𝐼𝑛
X
𝑂

𝑖∗ 𝑜∗

Exercise 6.2.2.5. Draw the corresponding undirected wiring diagrams for the following

cospans. Is it a bubble diagram?

1.

•𝑥1

•𝑥2

•𝑞1

•𝑞2

•𝑞3

•𝑞4

•
𝑦1

•
𝑦2

•
𝑦3

• 𝑧1

X
4 × X

2
X
3

X
1

2.

•𝑥1

•𝑥2

•𝑞1

•𝑞2

•𝑞3

•𝑟1

•
𝑦1

•
𝑦2

•
𝑦3

• 𝑧1

• 𝑧2

X
2 × X

3 × X
1

X
3

X
2

3.

•𝑥1 •
𝑦1

• 𝑧1

• 𝑧2

X
2

X
1

X
1

♢

Exercise 6.2.2.6. Express the following undirected diagrams as spans in the category

of arities. Which are bubble diagrams?

1.



6.2. THE BEHAVIORAL APPROACH TO SYSTEMS THEORY 269

2.

3.

4.

5.

♢

Both undirected wiring diagrams and bubble diagrams are composed by pullback

in the category Arity of arities, which is pushout in the category of finite sets. Let’s

recall the definition of pushout in the category of finite sets.

Definition 6.2.2.7. Given a solid diagram

𝐵 +𝐴 𝐶

𝐵 𝐶

𝐴
𝑓 𝑔

⌟

The pushout 𝐵+𝐴𝐶 of 𝑓 and 𝑔 is defined to be the disjoint union of𝐴 and 𝐵, quotiented

by the relation which sets 𝑓 (𝑎) equal to 𝑔(𝑎):

𝑃 =
𝐴 + 𝐵

𝑓 (𝑎) ∼ 𝑔(𝑎) .

The map 𝐵 → 𝐵 +𝐴 𝐶 is the map 𝑏 ↦→ [𝑏], the inclusion 𝐵 → 𝐵 + 𝐶 followed by the

quotient map, and similarly 𝐶 → 𝐵 +𝐴 𝐶 is 𝑐 ↦→ [𝑐].
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Note that though the notation 𝐵 +𝐴 𝐶 only mentions the sets involved, to form the

pushout we need to know the functions 𝑓 and 𝑔 as well.

We can understand the composite of undirected wiring diagrams as follows:

X
𝐿+𝑀𝐿′

X
𝐿

X
𝐿′

X
𝐼

X
𝑀

X
𝑂

⌟

The set 𝐿 is the set of links in the first diagram, and the set 𝐿′ is the set of links in the

second diagram. The set of links in the new diagram is their pushout 𝐿 +𝑀 𝐿′ over the

set of middle ports; this is the disjoint union of 𝐿 and 𝐿′ with any two links set equal

when they are connected to the same middle port.

Exercise 6.2.2.8. Consider the composite Eq. (6.12) reproduced here:

⇝

(6.14)

Using that you have already seen how to express each constituent bubble diagram

as a span in Exercise 6.2.2.6, compute the composite diagram using pullbacks in the

category of arities (or pushouts in the category of finite sets). Check that it gives the

correct diagram. ♢

It is not obvious that the composite of bubble diagrams is itself a bubble diagram;

we need to check that the resulting legs of the span are respectively surjective and

injective. Let’s do that now.
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Lemma 6.2.2.9. The composite of bubble diagrams is a bubble diagram. That is, in the

following diagram

X
𝐿+𝑀𝐿′

X
𝐿

X
𝐿′

X
𝐼

X
𝑀

X
𝑂

𝑖∗
1

𝑜∗
1

𝑖∗
2

𝑜∗
1

⌟𝑖∗
3

𝑜∗
3

If 𝑖1 and 𝑖2 are surjective and 𝑜1 and 𝑜2 are injective, then 𝑖3 is surjective and 𝑜3 is

injective.

Proof. We will show that the inclusion 𝑗1 : 𝐿→ 𝐿 +𝑀 𝐿′ is surjective, and the inclusion

𝑗2 : 𝐿′→ 𝐿 +𝑀 𝐿′ is injective.

An element of 𝐿 +𝑀 𝐿′ is either of the form [ℓ ] for ℓ ∈ 𝐿 or [ℓ ′] for ℓ ′ ∈ 𝐿′. If it is

of the form [ℓ ] for ℓ ∈ 𝐿, the it is in the image of 𝑗1 by definition. Suppose that it is of

the form [ℓ ′] for ℓ ′ ∈ 𝐿′. By hypothesis, 𝑖2 : 𝑀 → 𝐿′ is surjective, so ℓ ′ = 𝑖2𝑚 for some

𝑚 ∈ 𝑀. But then [ℓ ′] = [𝑖2𝑚] = [𝑜1𝑚] is in the image of 𝑗1.

Now, suppose we have two elements 𝑥 and 𝑦 ∈ 𝐿′ for which [𝑥] = [𝑦] in 𝐿+𝑀 𝐿′. This

means that 𝑥 and 𝑦 are related by the equivalence relation generated by 𝑖2(𝑚) ∼ 𝑜1(𝑚)
for any 𝑚 ∈ 𝑀. Explicitly, this means there is a zig-zag of elements in 𝐿 and 𝐿′,

each related by a element of 𝑀, connecting 𝑥 and 𝑦; that is, a sequence of elements

ℓ1 , . . . ℓ𝑛 ∈ 𝐿 and 𝑚1 , . . . , 𝑚2𝑛 with 𝑥 = 𝑖2𝑚1, 𝑖2𝑚2𝑛 = 𝑦, and that 𝑜1𝑚2𝑘−1 = ℓ𝑘 = 𝑜1𝑚2𝑘

for 1 < 𝑘 ≤ 𝑛 and 𝑖2𝑚2𝑘−2 = 𝑖2𝑚2𝑘−1 for 1 < 𝑘 ≤ 𝑛.

ℓ1 ℓ2 ℓ𝑛

𝑚1 𝑚2 𝑚3 · · · 𝑚2𝑛

𝑥 𝑖2𝑚2 = 𝑖2𝑚3 𝑦

𝑖2

𝑜1 𝑜1

𝑖2 𝑖2

𝑜1
𝑜1

𝑖2

We may prove this by induction on the length 𝑛 of the zig-zag. If the zig-zag has

length 0, then 𝑥 already equals 𝑦. Suppose that the zig-zag has length 𝑛 + 1; we will

show that 𝑖2𝑚2𝑛−1 = 𝑦 so that by the inductive hypothesis, 𝑥 = 𝑖2𝑚2𝑛−1 = 𝑦. Now, by

assumption, 𝑜1𝑚2𝑛−1 = ℓ𝑛 = 𝑜1𝑚2𝑛 . Since 𝑜1 was presumed to be injective, this means

that 𝑚2𝑛−1 = 𝑚2𝑛 ; but then 𝑖2𝑚2𝑛−1 = 𝑖2𝑚2𝑛 = 𝑦. □

The main upside to using bubble diagrams over the more general undirected

wiring diagrams is that bubble diagrams have a nicer double category for our pur-

poses.

Definition 6.2.2.10. For a set T of types, the double category BubbleT is the sub-
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double category of the double category Span(ArityT) of undirected wiring diagrams

consisting of the bubble diagram.

Let’s understand this double category. A vertical map in the double category

Span(Arity) is an undirected wiring diagram, and a horizontal map is a map 𝑓 ∗ : X
𝐼 →

X
𝐽

in ArityT. A square is a diagram

X
𝐼1

X
𝐼3

X
𝐿1

X
𝐿2

X
𝐼2

X
𝐼4

𝑓 ∗

𝑔∗

𝛼∗

𝑖∗
1

𝑜∗
1

𝑖∗
2

𝑜∗
2

That is, 𝛼 : 𝐿2 → 𝐿1 is an assignment of links from the diagram 𝑊2 on the right to the

diagram 𝑊1 on the left which preserves connectivity, relative to the maps 𝑓 and 𝑔 on

ports. For undirected wiring diagrams, this is an extra bit of data above and beyond

the data of the surrounding diagram — there may be multiple different 𝛼 which could

make the diagram commute. But if we restrict our attention to bubble diagrams, then

𝑖2 : 𝐼3 → 𝐿2 is surjective; therefore, there can be at most one 𝛼 making the above

diagram commute. This is because 𝛼(𝑖2(𝑥)) must equal 𝑖1( 𝑓 (𝑥)) and for every ℓ ∈ 𝐿2,

𝛼(ℓ ) = 𝛼(𝑖2(𝑥)) for some 𝑥 ∈ 𝐼2 by the surjectivity of 𝑖2. We can record this observation

in a proposition.

Proposition 6.2.2.11. For a set T of types, the double category BubbleT is thin (Def-

inition 3.4.1.2) — there is at most one square of any given signature. Furthermore,

BubbleT is spanlike (Definition 5.3.1.5).

Proof. We have just argued that there can be at most once square of any given signature.

As a double category of spans, BubbleT is spanlike. □

In order to prove Proposition 6.2.2.11, we only used the assumption in a bubble

diagram that 𝑖 was surjective. However, we will see that bubble diagrams are also

useful in the diagrammatic approach to systems theory (see Section 6.3), but this time

as cospans in the category of finite sets. The double category of such cospans differs

only from the double category considered here in that its horizontal arrows go the other

direction. In order to prove that this double category of bubble diagrams is spanlike

(Theorem 6.3.2.3) , we will also need the assumption that 𝑜 is injective.

Recall from Proposition 1.3.3.15 that we can interpret lenses in categories of arities in

any cartesian category by the universal property of Arity as the free cartesian category.

Since Arity is the free finitely complete category, we can use the same trick to interpret

bubble diagrams into spans in any finitely complete category. We can then use these

spans to compose systems using the behavioral approach to systems theory.
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Proposition 6.2.2.12. For a set T of types and a function 𝐶(−) : T → T interpreting

each type as an object of a finitely complete category C, there is a unique (up to unique

isomorphism) double functor

ev𝐶 : Span(ArityT) → Span(C)

interpreting each undirected wiring diagram as a span in C.

Explicitly, for T = 1, the functor ev𝐶 sends X
𝐼

to 𝐶 𝐼 .

We can use Proposition 6.2.2.12 to describe composition in any behavioral doctrine

with bubble diagrams. If we have a behavioral doctrine C, we get the doubly indexed

category BSysC : Span(C) → Cat. If we have some types of behaviors T of interest,

and interpretations 𝐶 : T→ C of these types as objects of C, then we can restrict along

ev𝐶 : Span(ArityT) → Span(C) to get the doubly indexed category

BubbleT ↩→ Span(ArityT)
ev𝑐−−→ Span(C)

BSysC−−−−→ Cat.

This gives us the compositionality of behavioral systems according to bubble diagrams.

In Section 1.3.4, we saw how we can add green beads with operations from some

Lawvere theory to our wiring diagrams by taking lenses in that Lawvere theory. We

can do this same with undirected wiring diagrams, but in this case we need to use

essentially algebraic theories, which are algebraic theories that can take advantage of all

finite limits.

Definition 6.2.2.13. An essentially algebraic theory is a category C with finite limits. A

model of the theory C in a category D with finite limits is a finite limit preserving

functor 𝐹 : C→ D.

Any model 𝐹 : C → D of an essentially algebraic theory C gives rise to a double

functor 𝐹 : Span(C) → Span(D). We can use this to interpret undirected wiring

diagrams over the theory C into the category D.

Definition 6.2.2.14. An undirected wiring diagram over an essentially algebraic theory

C is a span in C.
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Example 6.2.2.15. The diagram

𝑊 = +

0

𝑎1

𝑎2 𝑎3

𝑎4

𝑎5

𝑎6

𝑎7

𝑎8

is an undirected wiring diagram in the essentially algebraic theory of real vector spaces.

This happens to be the category Vect of finite dimensional real vector spaces, the same

as the Lawvere theory of real vector spaces. This diagram is represented by the span

given in Eq. (6.6) — we note𝑊 is a real vector space and that both legs of the span are

linear, so that this span can be understood as living in Vect.

Remark 6.2.2.16. It is not as easy to separate the bubble diagrams from the undirected

wiring diagrams when passing to a general essentially algebraic theory. This is fun-

damentally because the operations of the theory could be arbitrary, and so no longer

guarentee that the diagrams really satisfy the properties that bubble diagrams should.

6.2.3 The behavioral doctrine of interval sheaves

So far, we have only really seen the behavioral doctrine Set of sets, which gives rise to

the doubly indexed category Vec : Matrix→ Cat. In this section, we will see another

behavioral doctrine: the topos of interval sheaves.
Many systems, especially differential systems, give rise to trajectories which vary in

time. While in Section 6.2.1 we simply included the time variable into our definition in

of the sets — taking (R4)R instead of R4
— it would be nice if we didn’t have to worry

about this every time and could instead focus on the actual type of the variables. We

will see that by moving from sets to variable sets, or sheaves, we can incorporate the

variation of our trajectories in time without cluttering the types of our variables. A

great deal can be said about the sheaf approach to modelling dynamical systems — for

example, see [SSV16] and [SS19]. We will just scratch the surface here.

We will end this section by showing that the doubly indexed functor Traj defined in

Example 5.3.3.3 which takes the trajectories in a differential doctrine actually lands in

the behavioral doctrine of interval sheaves, and not just in the behavioral doctrine of

sets.
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The fundamental idea behind interval sheaves is that we would like to bake in

variation in time into the definition of our objects. Instead of having a set𝑋 of behaviors,

we would like to have a set 𝑋(ℓ ) of behaviors which last for a time of length ℓ . We say

that ℓ is the time interval during which the behavior 𝑏 ∈ 𝑋(ℓ ) takes place. If we have

any time interval ℓ ′ which is contained in ℓ , then we can restrict 𝑏 to its part which

occurs during the interval ℓ ′; we write this as 𝑏 |ℓ ′ ∈ 𝑋(ℓ ′).
We will begin by describing the category of intervals.

Definition 6.2.3.1. An interval is a positive real number ℓ ∈ (0,∞). A morphism

𝑎 : ℓ ′ → ℓ is a real number 𝑎 ∈ [0, ℓ ) so that 𝑎 + ℓ ′ ≤ ℓ . Morphisms are composed by

addition, and the identity is 0 : ℓ → ℓ .

We denote the category of intervals by I. We say a morphism 𝑎 : ℓ ′→ ℓ of intervals

is strict if 𝑎 > 0 and 𝑎+ ℓ ′ < ℓ (strict inequalities on both sides). We will write 𝑎 : ℓ ′⇝ ℓ

to say that 𝑎 is strict.

We can picture a morphism 𝑎 : ℓ ′→ ℓ as in the following diagram:

ℓ

ℓ ′

𝑎

An interval sheaf is a sheaf on the category of intervals. We won’t introduce sheaves

in general, just this special case. A sheaf on the category of intervals a functor Iop → Set
(a “presheaf”) satisfying a certain gluing property.

Definition 6.2.3.2. An interval sheaf 𝑋 consists of:

1. For every interval ℓ , a set 𝑋(ℓ ) of behaviors which may occur during the interval

ℓ .

2. For every morphism 𝑎 : ℓ ′→ ℓ of intervals, a restriction function

𝑏 ↦→ 𝑏 |𝑎 : 𝑋(ℓ ) → 𝑋(ℓ ′)

which selects out the part of 𝑏 occuring during the subinterval ℓ ′ beginning at 𝑎

in ℓ .

This data is required to satisfy the following conditions:

1. (Unity) For any ℓ , we have that 𝑏 |0 = 𝑏 for 0 : ℓ → ℓ .

2. (Functoriality) For any 𝑎′ : ℓ ′′→ ℓ ′ and 𝑎 : ℓ ′→ ℓ , we have

(𝑏 |𝑎)|𝑎′ = 𝑏 |𝑎′+𝑎

for all 𝑏 ∈ 𝑋(ℓ ), with 𝑎′ + 𝑎 : ℓ ′′→ ℓ the composite of 𝑎′ and 𝑎.
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3. (Gluing) 𝑋(ℓ ) is the limit of 𝑋(ℓ ′) taken over all strict inclusions 𝑎 : ℓ ′→ ℓ (where

𝑎 > 0 and 𝑎 + ℓ ′ < ℓ ):
𝑋(ℓ ) ∼−→ lim

𝑎:ℓ ′⇝ℓ
𝑋(ℓ ′).

More explicitly, we ask that the canonical map from 𝑋(ℓ ) to the limit given by

restricting behaviors in 𝑋(ℓ ) along strict inclusions 𝑎 : ℓ ′⇝ ℓ is an isomorphism.

An assignment of sets 𝑋(ℓ ) with restriction maps satisfying Unity and Functoriality is

known as an interval presheaf. This is equivalently a functor 𝑋 : Iop → Set.

The unity and functoriality laws are straightforward consistency checks on behav-

iors. Unity says that the portion of a behavior taking place over a whole interval is that

behavior. Functoriality says that if we have a behavior 𝑏 taking place in interval ℓ , and

we look at the portion of that behavior taking place in the subinterval 𝑎 : ℓ ′ → ℓ , and

then at the further subinterval 𝑎′ : ℓ ′′ → ℓ ′, the result is the same as simply looking at

the portion of that behavior taking place in that further subinterval.

Gluing is a bit more tricky. It means that a behavior is determined by what it does

on all strict subintervals. We can split the gluing condition apart into two further

conditions.

Lemma 6.2.3.3. An interval presheaf 𝑋 is an interval sheaf — satisfies the Gluing

condition — if and only if

1. (Separation) For every pair of behaviors 𝑏1 , 𝑏2 ∈ 𝑋(ℓ ), if 𝑏1 |𝑎 = 𝑏2 |𝑎 for all strict

𝑎 : ℓ ′⇝ ℓ , then 𝑏1 = 𝑏2.

2. (Existence) For any family 𝑏𝑎 ∈ 𝑋(ℓ𝑎) of behaviors indexed by strict inclusions

𝑎 : ℓ𝑎 → ℓ which are compatible in the sense that for any 𝑎′ : ℓ𝑎+𝑎′ → ℓ𝑎 so that

𝑏𝑎+𝑎′ = 𝑏𝑎 |𝑎′, there is a whole behavior 𝑏 ∈ 𝑋(ℓ ) such that 𝑏𝑎 = 𝑏 |𝑎 .

Proof. These two properties say that the canonical map

𝑋(ℓ ) → lim

𝑎:ℓ ′⇝ℓ
𝑋(ℓ ′)

are injective and surjective respectively. □

Example 6.2.3.4. For any 𝑛 ∈ N, there is an interval sheaf C𝑛 of 𝑛-times continuously

differentiable real valued functions. Explicitly,

C𝑛(ℓ ) = { 𝑓 : (0, ℓ ) → R | 𝑓 is 𝑛-times continously differentiable.}.

The restriction maps are given by restricting: if 𝑎 : ℓ ′ → ℓ , then 𝑓 |𝑎 = 𝑓 ◦ (𝑥 ↦→ 𝑎 + 𝑥)
where 𝑥 ↦→ 𝑎 + 𝑥 : (0, ℓ ′) → (0, ℓ ) is the inclusion of (0, ℓ ′) into (0, ℓ ) shifted over

by 𝑎. Unit and functoriality conditions follow directly from unit and associativity of

composition; the only tricky law to check is the gluing condition. We can check both

parts of the gluing condition using Lemma 6.2.3.3:



6.2. THE BEHAVIORAL APPROACH TO SYSTEMS THEORY 277

1. (Separation) Suppose that 𝑓1 and 𝑓2 : (0, ℓ ) → R are 𝑛-times continuously dif-

ferentiable and that their restriction to any subintervals are equal. Since (0, ℓ )
is open, for every 𝑥 ∈ (0, ℓ ) there is a strict subinterval in (0, ℓ ) containing 𝑥;

therefore, 𝑓1 and 𝑓2 are equal on this subinterval and therefore at 𝑥. So 𝑓1 = 𝑓2.

2. (Existence) Suppose we have compatible functions 𝑓𝑎 : (0, ℓ𝑎) → R for every

𝑎 : ℓ𝑎 ⇝ ℓ . For any 𝑥 ∈ (0, ℓ ), there is a strict subinterval 𝑎𝑥 : ℓ𝑎𝑥 ⇝ ℓ containing

𝑥 in the sense that 𝑥 ∈ (𝑎𝑥 , 𝑎𝑥 + ℓ𝑎𝑥 ). We may therefore define a function 𝑓 :

(0, ℓ ) → R by 𝑓 (𝑥) = 𝑓𝑎𝑥 (𝑥). This is well defined since if 𝑎′ : ℓ ′ ⇝ ℓ is any

other strict subinterval containing 𝑥, then 𝑥 is also in their intersection which is a

strict subinterval; by the compatibility of the functions 𝑓𝑎 , it follows that 𝑓𝑎𝑥 (𝑥) =
𝑓𝑎′(𝑥) on this intersection. Since being 𝑛-times continuously differentiable is a

local property and 𝑓 is defined to be a 𝑛-times continously differentiable in the

neighborhood of any point, 𝑓 is also 𝑛-times continously differentiable.

We can think of the interval C0
as the set of real numbers varying continuously in

time.

Example 6.2.3.5. We can adapt all the sets of Section 6.2.1 to be interval sheaves by

building in the variation of time. For example, we may define BBucket1 from Eq. (6.1) as

an interval sheaf by

BBucket1(ℓ ) :=


(ℎ1 , 𝑓11 , 𝑓12 , 𝑝11 , 𝑝12) : (0, ℓ ) → R5

���������
𝑑ℎ1

𝑑𝑡
= 𝐹1(ℎ1 , 𝑝11 , 𝑝12)

𝑓11 = 𝐻11(ℎ1 , 𝑝11)
𝑓12 = 𝐻12(ℎ1 , 𝑝12)


with restriction given by restriction of functions.

A map of interval sheaves is a natural transformation between the functors 𝑋 :

Iop → Set and 𝑌 : Iop → Set.

Definition 6.2.3.6. Let 𝑋 and 𝑌 be interval sheaves. A map 𝑓 : 𝑋 → 𝑌 is a family of

functions 𝑓ℓ : 𝑋(ℓ ) → 𝑌(ℓ ) for which the following naturality square commutes:

𝑋(ℓ ) 𝑌(ℓ )

𝑋(ℓ ′) 𝑌(ℓ ′)
|𝑎

𝑓ℓ

|𝑎

𝑓ℓ′

for any 𝑎 : ℓ ′→ ℓ . That is, for any behavior 𝑏 ∈ 𝑋(ℓ ), we have

𝑓ℓ (𝑏)|𝑎 = 𝑓ℓ ′(𝑏 |𝑎).

We denote the category of interval sheaves by Sh(I).
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Example 6.2.3.7. Continuing on from Example 6.2.3.4, suppose that 𝜙 : R → R is any

𝑛-times continuously differentiable function. Then we get a map of interval sheaves

𝜙∗ : C𝑛 → C𝑛 given by post-composition with 𝜙: we define (𝜙∗)ℓ ( 𝑓 ) := 𝜙 ◦ 𝑓 for

𝑓 : (0, ℓ ) → R in C𝑛(ℓ ). Naturality then follows from associativity of composition.

If we think of 𝑓 ∈ C𝑛 as a real number varying in time, then 𝜙∗( 𝑓 ) is its image under

the function 𝜙.

In order for interval sheaves to give a behavioral doctrine, we need to be able to

take pullbacks of interval sheaves. Luckily, pullbacks of interval sheaves can be taken

componentwise in the category of sets.

Proposition 6.2.3.8. Let 𝑓 : 𝑋 → 𝑍 and 𝑔 : 𝑌 → 𝑍 be maps of interval sheaves. Then

their pullback 𝑋 ×𝑍 𝑌 may be defined at ℓ by taking the pullback of 𝑓ℓ : 𝑋(ℓ ) → 𝑍(ℓ )
and 𝑔ℓ : 𝑌(ℓ ) → 𝑍(ℓ ) in the category of sets.

(𝑋 ×𝑍 𝑌)(ℓ ) := 𝑋(ℓ ) ×𝑍(ℓ ) 𝑌(ℓ ).

The terminal interval sheaf is defined by 1(ℓ ) = 1 or all ℓ .

Definition 6.2.3.9. The behavioral doctrine of interval sheaves is the finitely complete

category Sh(I).

Exercise 6.2.3.10. Go through Section 6.2.1 and adapt the story to work within the

behavioral doctrine of interval sheaves. What has to change, and what remains the

same? ♢

For the rest of this section, we will show that trajectories in differential systems

theories land in the behavioral doctrine of interval sheaves.

Theorem 6.2.3.11. There is a doubly indexed functor

ArenaDiff

Cat

Span(Sh(I))

SysDiff

Sh(I)/(−)

ArenaDet((0,−),−)
Traj

sending a system in the general differential doctrine to its interval sheaf of trajectories.

We begin by including the interval category I into the category SysDiff
of systems

and behaviors in the general differential doctrine. We will then show that we get a
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doubly indexed functor landing in interval presheaves. We will then note that these

presheaves are in fact sheaves — they satisfy the gluing condition.

Lemma 6.2.3.12. There is an inclusion 𝜄 : I → SysDiff
sending each interval ℓ to the

system (
1

id

)
:

(
𝑇(0, ℓ )
(0, ℓ )

)
⇆

(
1

(0, ℓ )

)
and every morphism 𝑎 : ℓ ′→ ℓ to the square

(
𝑇(0, ℓ ′)
(0, ℓ ′)

) (
𝑇(0, ℓ )
(0, ℓ )

)

(
1

(0, ℓ ′)

) (
1

(0, ℓ )

)

(
𝑇(𝑎+)
(𝑎+)

)

(
1

id

) (
1

id

)

(
!

𝑎+

)

Proof. The square commutes since the derivative of the function 𝑥 ↦→ 𝑎 + 𝑥 is 1. The

assignment is functorial by the definition of composition in the interval category. □

We can use this inclusion of I into SysDiff
to show that the trajectories form interval

sheaves. A trajectory 𝛾 of length ℓ in a system S is a behavior of shape 𝜄(ℓ ) in S:(
𝑇(0, ℓ )
(0, ℓ )

) (
𝑇StateS

StateS

)

(
1

(0, ℓ )

) (
InS

OutS

)

(
𝑇𝛾
𝛾

)

(
1

id

) (
updateS
exposeS

)

(
𝑓♭
𝑓

)
We can restrict trajectories by pre-composition:

(
𝑇(0, ℓ ′)
(0, ℓ ′)

) (
𝑇(0, ℓ )
(0, ℓ )

) (
𝑇StateS

StateS

)

(
1

(0, ℓ ′)

) (
1

(0, ℓ )

) (
InS

OutS

)

©­«
𝑇(𝑎+)

(𝑎+)
ª®¬

©­«
1

id

ª®¬

©­«
𝑇𝛾

𝛾

ª®¬
©­«

1

id

ª®¬ ©­«
updateS

exposeS

ª®¬
©­«

!

(𝑎+)
ª®¬ ©­«

𝑓♭

𝑓

ª®¬
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Explicitly, we will make the following definition.

Definition 6.2.3.13. For a system S ∈ SysDiff

(
𝐼
𝑂

)
in the general differential doctrine,

we define the interval (pre)sheaf of trajectories Traj(S) by

Traj(S)(ℓ ) := Behave𝜄(ℓ )(S)

=



(
𝑇(0, ℓ )
(0, ℓ )

) (
𝑇StateS

StateS

)

(
1

(0, ℓ )

) (
InS

OutS

)

(
𝑇𝛾
𝛾

)

(
1

id

) (
updateS
exposeS

)

(
𝑓♭
𝑓

)


with the projection Traj(S) → ArenaDiff

(
𝜄−,

(
𝐼
𝑂

))
in Sh(I)/ArenaDiff

(
𝜄−,

(
𝐼
𝑂

))
defined

by (
𝛾,

(
𝑓♭
𝑓

))
↦→

(
𝑓♭
𝑓

)
Restriction is given by precomposition.

Exercise 6.2.3.14. Check that the definition of Traj(S) in Definition 6.2.3.13 really gives

an interval presheaf. Then check that the projection Traj(S) → ArenaDiff

(
𝜄−,

(
𝐼
𝑂

))
is a

map of interval presheaves. ♢

We can, at this point, show that we are in fact working with interval sheaves. The

rest of the proof does not depend on this, since maps and pullbacks of interval sheaves

are the same as those of interval presheaves. But it will be nice to get it out of the

way.

Lemma 6.2.3.15. For a system S ∈ SysDiff

(
𝐼
𝑂

)
in the general differential doctrine, the

interval presheaf of trajectories Traj(S) is a sheaf.

Proof. We will show that Traj)(S) satisfies the two conditions of Lemma 6.2.3.3:

1. If two trajectories are equal on every strict subinterval, then they are in particular

equal at every point, and are therefore equal.

2. If we have a compatible family of trajectories 𝛾𝑎 on every strict subinterval 𝑎 : ℓ ′⇝

ℓ , then we can define a trajectory 𝛾 by 𝛾(𝑡) = 𝛾𝑎𝑡 (𝑡) for some strict subinterval

𝑎𝑡 : ℓ𝑡 ⇝ ℓ containing 𝑡. This is well defined by the compatibility of the family

𝛾𝑎 .

□
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To show that the rest of the doubly indexed functor lands correctly in interval

sheaves all comes down to this: in defining the doubly indexed functors Behave𝜄(ℓ ), we

only compose on the right. Since our interval sheaf structure is given by composing on
the left, the various parts of the doubly indexed functor will give rise to sheaf maps by

the associativity of left and right composition.

6.2.4 Further Reading in the Behavioral Doctrine

I have only given the briefest sketch of what can be done in the behavioral doctrine

here. In this subsection, I would like to suggest some further reading on this doctrine

of dynamical systems.

The behavioral doctrine of dynamical systems is named for Jan Willems’ behavioral
approach to systems theory, which was put forward in the paper [Wil87] and expanded

significantly in subsequent papers (see e.g. the book [WP13]). For a nice introduction,

see [Wil07; WP13].

A central reference, and one that we drew on in Section 6.2.3, is the book Temporal
Type Theory by David I. Spivak and Patrick Schultz [SS19]. For more detailed examples

of how interval sheaves can be used to describe the behavioral approach to dynamical

systems, see [SSV16].

John Baez and his students and collaborators have produced a great deal of wonder-

ful work within the behavioral doctrine. See for example [BF18][BM20][BP17][BFP16][BE15][BC18].

Often, these papers also work within the port-plugging doctrine and describe “black

boxing functors” which take the behaviors of port-plugging systems, naturally landing

the in the behavioral doctrine.

For an interesting and deep examples of behavioral theories, see Baez, Weisbart,

and Yassine’s Open Systems in Classical Mechanics [BWY17]. In this paper, the authors

construct categories of Hamiltonian and (respectively) Lagrangian spans, and express

the Legendre transform as a functor from the Lagrangian to the Hamiltonian category.

While this does not exactly fit into the formalism presented here for technical reasons

(namely, the category of manifolds does not have all pullbacks), it is close enough for

the same reasoning to apply. I expect that by expanding the class of objects considered

by Baez, Weisbart, and Yassine, from manifolds to some more convientient category

of differential spaces, one could see these Hamiltonian and Lagrangian systems as

theories in the behavioral doctrine proper. Another approach would be to expand the

behavioral doctrine to allow for categories that might not have all pullbacks, but still

admit some sort of span double category.

6.3 Drawing Systems: The Port Plugging Doctrine

There is another approach to systems modelling which is very common in the sciences:

drawing diagrams! Diagrams help express the structure of complex systems in ways

that can be appreciated visually.
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Consider, for example, a circuit diagram:

𝑉 𝑅

𝐿
(6.15)

In Example 3.2.1.9 we saw how we could use Kirchoff’s laws to interpret this circuit as

a differential system (
updateRL

id

)
:

(
R

R

)
⇆

(
R2 × R∗

R

)
where

updateRL

©­­«𝐼 ,

𝑉

𝑅

𝐿


ª®®¬ B

𝑉 − 𝑅𝐼
𝐿

.

But why not consider the circuit itself as a system? This is a different way of thinking

about systems: the circuit is a diagram, it doesn’t have a set of states, exposed variables

of state, and it doesn’t update according to parameters. Nevertheless, we can compose

circuits together to get more complex circuits. For example, we can think of the circuit

(6.15) as the composite of two smaller circuits:

𝑉

𝐿

𝑅 ↦→ 𝑉 𝑅

𝐿

(6.16)

We compose circuit diagrams by gluing their wires together — just like we might

actually solder two physical circuits together. Another example of a system like circuit

diagrams is a population flow graph (as, for example, in Definition 1.3.2.8). A simple

population flow graph consists of a graph whose vertices are places and whose edges

are paths between places, each labeled by its flow rate.

Boston NYC

Tallahassee

𝑟1

𝑟2

𝑟3 𝑟4

(6.17)

We can compose population flow graphs by gluing places together. Fore example, we

can think of population flow graph (6.17) as the composite of two smaller population
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flow graphs:

Boston NYC

Tallahassee

𝑟1

𝑟2

𝑟3

NYC

Tallahassee

𝑟4
↦→

Boston NYC

Tallahassee

𝑟1

𝑟2

𝑟3 𝑟4

(6.18)

We have added in the connection between New York and Tallahassee by gluing together

the places in these two population flow graphs.

How can we describe this kind of composition in general? Instead of exposing

variables of state, systems like circuit diagrams and population flow graphs expose

certain parts of themselves (the ends of wires, some of their places) to their environment.

We can refer to these parts of a circuit-diagram like system as its ports. The ports form

the interface of this sort of system.

For now, let’s suppose that a system S has a finite set of ports PortsS, which acts as

its interface. For example, we can see the ports of the open circuit diagram on the left

of (6.16):

𝑉

𝐿

S PortsS

(6.19)

We can see the set of ports as a trivial sort of circuit diagram — one with no

interesting components of any kind — which has been included into the circuit diagram

S. That is, the way we describe an interface is by a map 𝜕S : 𝐿PortsS → S which picks

out the ports in the system S, and where 𝐿 is some operation that takes a finite set into

a particularly simple sort of system.

Suppose we want to describe the composition of Eq. (6.16). This will compose

system S with the system T:

𝑅

T PortsT

(6.20)

Just like with the parameter setting systems we’ve been composing the whole book, we

will compose these two systems first by considering them together as a joint system,

and then composing them according to a composition pattern. Here, the composition

pattern should tell us which ports get glued together, and then which of the resulting
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things should be re-exposed as ports. For this, we will use a cospan:

PortsS PortsT

𝑀

PortsS◦MT
(6.21)

Here, the composite system exposes no ports, so we leave its set of ports empty. But

with the map on the left, we show how we want to glue the ports of S andT together. To

actually get the composite system, we actually glue these ports along this plan. Gluing

objects together in a category means taking a pushout:

S ◦𝑀 𝑇

S + T 𝑀

PortsS + PortsT PortsS◦MT

𝜕S+𝜕T

⌜
𝜕S◦𝑀T

(6.22)

The symbol + here is denoting the coproduct, or disjoint union, which lets us put

our circuit diagrams side by side.

We can describe systems like circuit diagrams and population flow graphs which

are composed using pushouts in the above way port-plugging systems. The idea with

these systems is that they expose some ports, and we compose them by plugging the

ports of one system into the ports of another — gluing them together using pushouts.

Definition 6.3.0.1. A doctrine for the port-plugging doctrine is a category D with finite

colimits, which we can think of as a category of diagrams.

The port-plugging doctrine 𝔓ortPlugging which encapsulates the diagrammatic

approach to systems theory is the functor which sends each port-plugging doctrine D

to the vertical slice construction of the inclusion of the initial object into the double

category of cospans in D:

Sys𝔓ortPlugging

D
:= 𝜎(1→ Cospan(D)).

This definition of the port plugging doctrine answers the questions of Informal

Definition 6.1.0.1 in the following ways:

1. A system is a diagram 𝐷 in D together with an map 𝜕 : 𝐼 → 𝐷 picking out the

interface of the diagram — the parts of it which are considered to be exposed to

the environment.
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2. An interface is a diagram 𝐼 which may be included as an exposed part of another

diagram. That is, 𝐼 consists of the ports of a diagram.

3. Interfaces are connected by cospans which describe which parts of the interfaces

are to be glued together.

4. Systems are composed by gluing their interfaces together, that is, by plugging the

ports of one system into those of another. This is accomplished by cospan com-

position.

5. A map between systems is a map of diagrams which acts in a specified way on

their interfaces.

6. Maps between systems can be composed along the composition patterns when

we have a square in the double category of cospans.

There is a close formal analogy between the diagrammatic and the behavioral ap-

proaches to systems theory: Eq. (6.22) is the same diagram as Eq. (6.7), just with all

the arrows going the other way around. This means we can use bubble diagrams to

describe composites of diagrams as well!

6.3.1 Port-plugging systems theories: Labelled graphs

Let’s work out a class of port-plugging theories to get a sense for how it feels to work

within the doctrine. Most of the examples we gave above were graphs whose nodes

and edges were labebelled with some sort of data. We can formalize this situation in

general.

First, let’s recall what a graph is, for a category theorist. There are many different

flavors of graph, and what category theorists tend to prefer would be called directed
multi-graphs with loops by more traditional graph theorists. We will just call them

graphs.

Definition 6.3.1.1. A graph 𝐺 consists of a set 𝐺0 of nodes, a set 𝐺1 of edges, and

functions 𝑠, 𝑡 : 𝐺1 ⇒ 𝐺0 sending each edge 𝑒 to its source node 𝑠(𝑒) and target node

𝑡(𝑒). We write 𝑒 : 𝑎 → 𝑏 to say that 𝑠(𝑒) = 𝑎 and 𝑡(𝑒) = 𝑏.
A graph map 𝜑 : 𝐺→ 𝐻 consists of two functions 𝜑0 : 𝐺0 → 𝐻0 and 𝜑1 : 𝐺1 → 𝐻1

sending nodes to nodes and edges to edges which commute with source and target.

That is, 𝜑0(𝑠(𝑒)) = 𝑠(𝜑1(𝑒)) and same for 𝑡. In other words, if 𝑒 : 𝑎 → 𝑏 in 𝐺, then

𝜑1(𝑒) : 𝜑0(𝑎) → 𝜑0(𝑏) in 𝐻. We’ll usually refer to both 𝜑0 and 𝜑1 as 𝜑 as long as it isn’t

confusing to do so.

We denote the category of graphs by Graph.
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Example 6.3.1.2. Here’s an example of a graph 𝐺:

1

23

𝑎

𝑏

𝑐

𝑑

We can describe this using Definition 6.3.1.1 by setting 𝐺0 := {1, 2, 3} and 𝐺1 :=

{𝑎, 𝑏, 𝑐, 𝑑}, together with

𝑠(𝑎) = 1 𝑡(𝑎) = 2

𝑠(𝑏) = 2 𝑡(𝑏) = 3

𝑠(𝑐) = 2 𝑡(𝑐) = 3

𝑠(𝑑) = 2 𝑡(𝑑) = 2

We should emphasize that the names we have adorned the picture 𝐺 with are just

that: names. They are unique identifiers for each node and edge in 𝐺, not labels (which

might be shared by different nodes and edges). We’ll soon see a definition of a labelled

graph which will make this disctinction more stark.

Using some category theory, we can expedite our understanding of the category of

graphs.

Proposition 6.3.1.3. The category Graph of graphs is the category of presheaves on the

category 0⇒ 1 consisting of two objects 0 and 1 and two arrows 𝑠 and 𝑡 from 0 to 1.

Proof. This is a matter of checking definitions against eachother. A presheaf 𝐺 on that

small category would consists of two sets 𝐺(0) and 𝐺(1) together with two functions

𝐺(𝑠), 𝐺(𝑡) : 𝐺(1) ⇒ 𝐺(0)— precisely a graph. Furthermore, a natural transformation

between these presheaves will be a graph map. □

As a corollary, we note that the category of graphs has all limits and colimits, and

that they may be calculated in the category of sets. That is, the (co)limit of a diagram

of graphs has as nodes the (co)limit of the diagram of sets of nodes, and similarly for

its edges. In particular, the category of graphs is has all finite colimits.

Corollary 6.3.1.4. The category Graph has all finite colimits. The empty graph has no

nodes or edges, and the pushout of graphs is the graph with nodes the pushout of the

nodes and edges the pushout of the edges.

In effect, what this means is that taking the pushout of graphs means gluing them

together.



6.3. DRAWING SYSTEMS: THE PORT PLUGGING DOCTRINE 287

Example 6.3.1.5. Consider the graph • → •with two nodes and a single edge from one

to the other. There are two maps from the graph • having just one node into • → •
which we might call 𝑠 and 𝑡; the first picks out the source of the edge, and the second

picks out the target. We can then form the following pushout square:

• (• → •)

(• → •) (• → • → •)

𝑡

𝑠

⌟

The two maps from • → • to • → • → • include it as the first edge and second edge

respectively. The fact that the square commutes means that the target of the first edge

is the source of the second edge. That this is a pushout means that to map out of

• → • → •, it suffices to give two maps out of • → • which send the target of the first

to the same place as the source of the second.

As you can see, taking the pushout glues together the two graphs over their shared

part.

We are interested in labelled graphs. We will give a general definition of labelled

graphs in the upcoming Definition 6.3.1.12, but for now we make the following defintion

of two important special cases.

Definition 6.3.1.6. Let 𝐺 be a graph and 𝐿 a set of labels. Then

1. An edge labelling of 𝐺 in 𝐿 is a function ℓ : 𝐺1 → 𝐿.

2. A node labelling of 𝐺 in 𝐿 is a function ℓ : 𝐺0 → 𝐿.

Example 6.3.1.7. The transition diagrams we drew as way back in Example 1.2.1.8 to

describe our deterministic systems can be seen as labelled graphs. An

(
𝐼
𝑂

)
-system S

will be a graph with nodes StateS and an edge 𝑠 → 𝑠′ for each 𝑖 ∈ 𝐼 with updateS(𝑠, 𝑖) =
𝑠′. This will have a node-labeling given by exposeS and an edge labelling given by

sending the edge 𝑠 → 𝑠′ corresponding to input 𝑖 to 𝑖.

Example 6.3.1.8. We can view a graph with edge labels in the set (0,∞) of positive

real numbers as a network of connections 𝑐 with capacity ℓ (𝑐). Or, we can see such

a labelling as telling us the flow which is currently moving through the connection 𝑐.

There are many ways we could use such a labelling.
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Example 6.3.1.9. We can see an RL-circuit such as this one from Example 3.2.1.9

𝑉 𝑅

𝐿

as a labelled graph, with edge labels in the set {𝑉, 𝑅, 𝐿} × (0,∞) + {𝑊}. A plain wire

will be labelled𝑊 , while a voltage source will be labelled (𝑉, 𝑣)where 𝑣 ∈ (0,∞) is the

voltage, and similarly for resistors and inductors.

In order to better understand the categories of labelled graphs, we can re-interpret

the definition of labelled graphs in terms of graph maps. First, we need to describe a

few special graphs.

Definition 6.3.1.10. Let 𝐿 be a set. We describe two important graphs built out of 𝐿:

1. First, the graph 𝐸𝐿 has a single node with all the elements of 𝐿 as edges. That is,

𝐸𝐿0 = 1 and 𝐸𝐿1 = 𝐿, with 𝑠 and 𝑡 both being the unique function from 𝐿 to 1.

2. Second, the graph 𝐾𝐿— the complete graph on 𝐿— has nodes 𝐿 and a single edge

from each node to each other node (including from a node to itself). Formally,

𝐾𝐿0 = 𝐿 and 𝐾𝐿1 = 𝐿 × 𝐿, with 𝑠 and 𝑡 the first and second projection 𝐿 × 𝐿→ 𝐿.

Now we can re-interpret Definition 6.3.1.6

Proposition 6.3.1.11. Let 𝐺 be a graph and 𝐿 a set of labels.
1. An edge labelling of 𝐺 in 𝐿 is a graph map ℓ : 𝐺→ 𝐸𝐿.

2. A node labelling of 𝐺 in 𝐿 is a graph map ℓ : 𝐺→ 𝐾𝐿.

Proof. First, let’s consider edge labellings. An edge labelling of 𝐺 in 𝐿 is a function

ℓ : 𝐺1 → 𝐿; given such a function, we can make a map ℓ̂ : 𝐺 → 𝐸𝐿 by defining ℓ̂1 = ℓ

and ℓ̂0 to be the unique function 𝐺0 → 1. Conversely, any graph map ℓ : 𝐺→ 𝐸𝐿 gives

us ℓ1 : 𝐺1 → 𝐿. These two processes are inverse, because there is a unique function

𝐺0 → 1.

The case of node labellings is very similar. Let ℓ : 𝐺0 → 𝐿 be a node labelling. We

can then define a map ℓ̂ : 𝐺 → 𝐾𝐿 by ℓ̂0 = ℓ and ℓ̂1(𝑒) = (ℓ (𝑠(𝑒)), ℓ (𝑡(𝑒))). Conversely,

for any map ℓ : 𝐺 → 𝐾𝐿 we have ℓ0 : 𝐺0 → 𝐿. These two processes are inverse since

any edge 𝑒 : 𝑎 → 𝑏 must be sent to a edge ℓ (𝑎) → ℓ (𝑏), but there is exactly one such

edge. □

This reframing justifies us generaling the notion of labelling to allow values in any

graph.
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Definition 6.3.1.12. Let L be a graph. A graph labelled in L is a graph 𝐺 together with

a labelling map ℓ : 𝐺→ L.

A map of L-labelled graphs 𝐺→ 𝐻 is a map 𝜑 : 𝐺→ 𝐻 which preserves labels in

the sense that 𝜑 # ℓ𝐻 = ℓ𝐺. We denote the category of L-labelled graphs by GraphL.

Category theoretically, the category GraphL is the slice category of Graph over L.

Example 6.3.1.13. Continuing Example 6.3.1.7, we can think of a transition diagram for

an

(
𝐼
𝑂

)
-system as a 𝐾𝑂×𝐸𝐿 labelled graph. By the universal propoerty of the product,

a labelling in 𝐾𝑂 × 𝐸𝐼 is a labelling in 𝐾𝑂 together with a labelling in 𝐸𝐼, which is to

say a node labelling in 𝑂 together with an edge labelling in 𝐼.

We can think of a general graph L as giving us a system of labels with constraints.

The nodes of L are the possible node-labels, and the edges of L are the possible edge

labels. But an edge label is constrained to go between two node labels. Therefore, the

way the edges are linked together constrains what sort of labels an edge might have

given the labels its source and target have.

Example 6.3.1.14. Let L be the graph 0→ 1 with two nodes and a single edge between

them. A L-labelled graph is a bipartite graph. That is, a graph 𝐺 with a map ℓ : 𝐺→ L

divides the nodes of 𝐺 in two — those with ℓ (𝑛) = 0 and those with ℓ (𝑛) = 1 — and

there can only be edges from a node labelled 0 to a node labelled 1.

As a corollary of our abstract description of labelled graphs, we can see quite quickly

that the category of labelled graphs has finite colimits for any labelling graph L.

Proposition 6.3.1.15. For any graphL of labels, the category GraphL of graphs labelled

in L has all finite colimits which can be calculated in Graph.

Proof. This is a general fact concerning slice categories, see for example Proposition

3.3.8 of [Rie17]. □

Going further, if we have any map 𝑓 : LL′ of label graphs, we get a functor

𝑓∗ : GraphL → GraphL′

given by sending ℓ : 𝐺 → L to ℓ # 𝑓 : 𝐺 → L′. This functor preserves finite colimits,

since by Proposition 6.3.1.15 we may calculate these on the underlying graphs without

reference to the labelling. For this reason, we get a functor

Graph(−) : Graph→ FinCoCompleteCat

This will let us define the doctrine of labelled graphs.
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Definition 6.3.1.16. A theory for the doctrine of labelled graphs is a graph of labels L.

The doctrine of labelled graphs 𝔏abelledGraphs is the functor that sends a graph

L of labels to the vertical slice construction of the inclusion of the empty graph into

the double category of cospans in the category GraphL of graphs labelled in L:

Sys𝔏abelledGraphs

L
:= 𝜎(1→ Cospan(GraphL)).

The doctrine of labelled graphs is a restriction of the port-plugging doctrine Defini-

tion 6.3.0.1. For that reason, it answers the questions of Informal Definition 6.1.0.1 in

much the same way.

1. A system is a labelled graph ℓ : 𝐺→ L in GraphL together with an map 𝜕 : 𝐼 → 𝐺

picking out the interface of the diagram — the parts of it which are considered

to be exposed to the environment.

2. An interface is a labelled graph ℓ : 𝐼 → L which may be included as an exposed

part of another labelled graph. That is, 𝐼 consists of the ports of a diagram.

3. Interfaces are connected by cospans which describe which parts of the interfaces

are to be glued together. These cospans respect the labelling.

4. Systems are composed by gluing their interfaces together, that is, by plugging the

ports of one system into those of another. This is accomplished by cospan com-

position.

5. A map between systems is a map of labelled graphs which acts in a specified way

on their interfaces.

6. Maps between systems can be composed along the composition patterns when

we have a square in the double category of cospans.

The examples we saw in the introduction to this section can all be seen as labelled

graphs, so we have seen how composition works in the doctrine of labelled graphs. But

we still need to see how we can use bubble diagrams to describe composition patterns

in the port-plugging doctrine.

6.3.2 Bubble diagrams for the port-plugging doctrine

In the definition of the port-plugging paradigm, we take the double category of in-

terfaces in a theory (that is, a finitely cocomplete category “of diagrams”) D to be the

double category of cospans Cospan(D) in D. The thing about this double category is

that it is not spanlike in the sense of Definition 5.3.1.5.1 But, somewhat remarkably, the

double category of bubble diagrams BubbleT of Definition 6.2.2.10 is spanlike. So, if

we use bubble diagrams to compose our port-plugging systems, we can take advantage

of Theorem 5.3.2.2 to construct representable functors in this doctrine as well. But first,

let’s describe how we can use bubble diagrams in the port-plugging doctrine in the

first place.

1
It is, as you might guess, cospanlike instead.
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We can use bubble diagrams to describe composition in the port-plugging doctrine,

just like we did for the behavioral doctrine. In Section 6.2.2, we exploited the fact that

Arity was the free category with finite limits generated by a single object to interpret

spans in Arity in any category with finite limits. Since we defined bubble diagrams

to be spans in Arity (or its many-typed variants) with left leg surjective and right leg

injective, this let us interpret bubble diagrams in any category with finite limits.

But Arity � FinSetop

is the opposite of the category of finite sets. This means that

FinSet is the free category with finite colimits generated by a single object. We can see

bubble diagrams as certain cospans in FinSet, which is arguably a more direct way to

understand what they are. For this reason, we can interpret bubble diagrams in any

category with finite colimits, allowing us to use them to describe composition in the

port-plugging doctrine.

Proposition 6.3.2.1. The category of typed finite sets FinSetT is the free category with

finite colimits on the set of objects T. As a corollary, for every function 𝑃 : T → D

from T to a finitely cocomplete category D, we get a double functor

ev𝑃 : Cospan(FinSetT) → Cospan(D)

which sends 𝜏 : 𝑋 → T to the coproduct

∑
𝑥∈𝑋 𝑃𝜏𝑥 in D.

Given a collection 𝑃 : T → D of ports, Proposition 6.3.2.1 will let us restrict the

double indexed category

𝜎(1 0−→ Cospan(D)) = (−)/D : Cospan(D) → Cat

along the double functor BubbleT ↩→ Cospan(FinSetT)
ev𝑃−−→ Cospan(D).

Let’s now prove that BubbleT is spanlike. We will need a crucial lemma.

Lemma 6.3.2.2. Let 𝐼 → 𝐿 ← 𝑀 and 𝑀 → 𝐿′ ← 𝑂 be bubble diagrams. Then in the

following diagram describing their composite:

𝐿 +𝑀 𝐿′

𝐿 𝐿′

𝐼 𝑀 𝑂

𝑖1 𝑜1 𝑖2 𝑜1

⌟𝑖3 𝑜3

the middle square is a pullback in addition to being a pushout.

Proof. This follows from the fact that FinSetT is an adhesive category which implies in

particular that any pushout of a monomorphism is also a pullback. We’ll prove this

fact directly.
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We will show that 𝑀 is bĳective with the pullback 𝐿 ×𝐿+𝑀𝐿′ 𝐿′ via the map 𝑚 ↦→
(𝑜1(𝑚), 𝑖2(𝑚)). Suppose we have ℓ ∈ 𝐿 and ℓ ′ ∈ 𝐿′ with [ℓ ] = [ℓ ′] in 𝐿 +𝑀 𝐿′, seeking

to show that there is a unique 𝑚 ∈ 𝑀 for which ℓ = 𝑜1(𝑚) and 𝑖2(𝑚) = ℓ ′. First, we

note that uniqueness follows immediately from the assumption that 𝑜1 is injective; if

ℓ = 𝑜1(𝑚) and ℓ = 𝑜1(𝑚′), then we may conclude that 𝑚 = 𝑚′. So it remains to show

that there is any such 𝑚.

We know that [ℓ ] = [ℓ ′] in 𝐿+𝑀 𝐿′, so we know that there is a zig-zag of elements in

𝐿 and 𝐿′, each related by an element of 𝑀, which connect ℓ and ℓ ′. We can show that

this zig-zag may be taken to have length 1, so that ℓ and ℓ ′ are directly connected by a

single 𝑚 ∈ 𝑀.

Suppose that we have a zig-zag

ℓ1 ℓ2 ℓ ′

𝑚1 𝑚2 𝑚3 · · ·

ℓ 𝑜1𝑚2 = 𝑜1𝑚3

𝑜1

𝑖2 𝑖2

𝑜1 𝑜1

𝑖2

Note that all the middle terms have 𝑜1𝑚2𝑖 = 𝑜1𝑚2𝑖+1; by the injectivity of 𝑜1, this implies

that 𝑚2𝑖 = 𝑚2𝑖+1 so that in fact there is a single 𝑚 directly connecting ℓ and ℓ ′. □

Now we can prove that the double category of bubble diagrams is spanlike.

Theorem 6.3.2.3. The double category BubbleT of bubble diagrams (with wires typed

in the set T) is spanlike.

Proof. We have to show that any square into the composite of two bubble diagrams

factors uniquely as the vertical composite of two squares. Consider the following

diagram:

𝐷 𝐼

𝐷 𝐿

𝐷 𝐿 +𝑀 𝐿′ 𝑀

𝐷 𝐿′

𝐷 𝑂

𝛼

The solid diagram is a square 𝛼 from 𝐷 to the composite of 𝐼 → 𝐿 ← 𝑀 and 𝑀 →
𝐿′ ← 𝑂. The dashed arrows are uniquely determined by compsing 𝐷 → 𝐼 → 𝐿 and

𝐷 → 𝑂 → 𝐿′ respectively, and because the two solid squares commute, they are both

equalized when composed with the inclusions into 𝐿 +𝑀 𝐿′. Then, by Lemma 6.3.2.2,
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there is a unique map 𝐷 → 𝑀 making the diagram commute; but this is precisely the

splitting of 𝛼 into two squares that we needed. □

Because of Theorem 6.3.2.3, we can use Theorem 5.3.2.2 to construct representable

lax doubly indexed functors in the port-pluggin doctrine. As an example of such a

functor, consider the theory of (unlabelled) graphs and the system P3 = • → • →
• → •, with interface • • included as its endpoints, in this theory. This system

P3 represents paths of length 3, and so we get a lax doubly indexed functor sending a

graph with boundary to the set of paths of length 3 from one boundary node to another

in it. That is doubly indexed functor is lax and not taut reflects an important fact about

the compositionality of graphs: when graphs are composed, new paths can appear

which weren’t possible before.

6.3.3 Further Reading in the port-plugging doctrine

There has been a lot of work done in the port-plugging doctrine, and we have hardly

scratched the surface.

In its categorical guise, this doctrine was innaugurated with Brendan Fong’s work

on decorated cospans [Fon15]. For examples of putting this theory to work, see [BF18;

BFP16; BP17]. This was later expanded by Kenny Courser and John Baez to a theory

of structured cospans in [BC20] (see [BCV22] for a detailed comparison between these

approaches, and see [Pat23] for a unified and generalized approach using doubly

indexed categories). John Baez and his students have used these theories in a variety

of settings; see for example [BM20; BC18].
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