Modal Fracture of Higher Groups

"Differential
Cohomology
Hexagon"

David Jaz Myers
Johns Hopkins University

Plan

Thm: For any crisp higher group \(G \): (Unstable version of Schreiber 54.1.2)

\[
\begin{align*}
\mathcal{G} & \xrightarrow{\Delta} g \\
bc & \xrightarrow{\otimes} g & \otimes g = bbc
\end{align*}
\]

i.e. \(\otimes \) and \(\otimes \) are pullbacks, \(\otimes \) and \(\otimes \) are fiber sequences, and \(\otimes g = bbg \).

Cohesive HOTT, a refresher

1. The universal co-cover \(\mathcal{G} \xrightarrow{\Delta} g \) (proof of \(\otimes \))
2. The infinitesimal remainder \(g \xrightarrow{\otimes} g \) (proof of \(\otimes \) and \(\otimes \))
3. The Modal Fracture Hexagon (proof of \(\otimes \) and \(\otimes \))
Cohesive HoTT - Crispness and b-comodality

(Shulman)

\[\Delta | \Gamma \vdash a : A \]

Add crisp variables to express discontinuous dependence

\[x :: A \]

Crisp terms: \[\Delta | \Gamma \vdash a : A \] have only crisp variables.

Comodality \(b : bA \) is inductively generated by crisp \(a :: A \).

\[
\begin{align*}
\Delta | \Gamma & \vdash A :: Type \\
\Delta | \Gamma & \vdash a :: A \\
\Delta | \Gamma & \vdash bA :: Type \\
\Delta | \Gamma & \vdash a^b :: bA \\
\end{align*}
\]

Counit: \((_)_b : bA \rightarrow A \)

\[a^b \mapsto a \]

\(u \mapsto \text{let } a^b = u \text{ in } a \).

Cohesive HoTT - Shape and Unity of Opposites

We assume a modality “shape” \(S \) which satisfies:

Axiom (Unity of Opposites): A crisp type \(A :: Type \) is \(S \)-modal iff it is \(b \)-modal

\[A \sim SA \text{ iff } bA \sim A \equiv: \text{“} A \text{ is crisp} \]

Theorem (Shulman): For \(A, B :: Type \),

\[b(A \rightarrow bB) \sim b(SA \rightarrow B) \]

(Rmk: We don’t need \(# \), so this is really “Strongly \(\sim \)-connected type thing”.)
Cohesive HoTT - Examples:

<table>
<thead>
<tr>
<th>Cohesion (Smooth/Cont.)</th>
<th>Site</th>
<th>Types</th>
<th>"Discrete"</th>
<th>S</th>
<th>SX</th>
<th>bA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euclidean Spaces</td>
<td>Smooth/Continuous ∞-Gropoids</td>
<td>Discrete</td>
<td>Lc, TR</td>
<td>Homotopy Type of X</td>
<td>Moduli stack of A-valued local systems</td>
<td></td>
</tr>
<tr>
<td>Fixed/Invariant</td>
<td>Lc (#BG)</td>
<td>Strict Quotient of X</td>
<td>Homotopy Quotient of A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simplicial</td>
<td>Simplicial ∞-Gropoids</td>
<td>Discrete</td>
<td>Local</td>
<td>Geometric Realization</td>
<td>Point, A_0 of A</td>
<td></td>
</tr>
<tr>
<td>Spectral</td>
<td>Parametrized Spectra</td>
<td>Space</td>
<td>Local</td>
<td>Underlying Space of X</td>
<td>Underlying Space of A: fA = bA = bA</td>
<td></td>
</tr>
</tbody>
</table>

Non-Examples: Topological/pyknotic toposes.
- Objects in sites are not locally ∞-connected.
- (Good fibrations trick doesn’t work since Aut(X) may not be discrete even when X is discrete.

1. The Universal ∞-Cover

A cover \(p: E \to B \) lifts uniquely against maps which are an equivalence on \(\pi_1 \):

\[
\begin{array}{ccc}
X & \to & E \\
\downarrow p & & \downarrow f \\
Y & \to & B \\
\end{array}
\]

Thm (Rijke, Chirabini): For any modality \(! \), there is an orthogonal factorization system

\(\{!\text{-equiv} \} \perp \{!\text{-étale} \} \) where \(f \circ !\text{-étale} \) when \(p \circ !f \).

Def (Chirabini): A map \(p: E \to B \) is a cover when it is \(!\text{-étale} \) and its fibers are sets.

(See "Good Fibrations" Sec)

The universal cover \(\tilde{\pi}: \tilde{E} \to B \) is a simply connected cover

\[
\begin{array}{ccc}
\tilde{E} & \to & \mathbb{E} \\
\downarrow & & \downarrow \mathbb{E} = * \\
E & \to & \mathbb{B}
\end{array}
\]
(1) The Universal oo-cover

An oo-cover \(p : E \rightarrow B \) lifts uniquely against homotopy equivalences:

\[
\begin{array}{ccc}
X & \xrightarrow{p} & E \\
\downarrow Y & & \downarrow \phi \\
B & \xrightarrow{f} & B
\end{array}
\]
when \(\phi \) is an equiv.

Theorem (Rijke, Cheerbini): For any modality \(! \), there is an orthogonal factorization system

\[
\{!\text{-equiv} \} \perp \{!\text{-étale} \}
\]
where \(f \) is \(!\)-étale when \(f : Y \rightarrow Y \).

Definition (Cheerbini): A map \(p : E \rightarrow B \) is an oo-cover when it is \(!\)-étale and \(!\)-connected.

The universal oo-cover \(\tilde{\pi} : \tilde{B} \rightarrow B \) is a contractible oo-cover

\[
\begin{array}{ccc}
\tilde{B} & \rightarrow & \tilde{B} = \ast \\
\downarrow & & \downarrow \\
B & \rightarrow & \ast
\end{array}
\]

fiber sequence.

(1) The Universal oo-cover — What is it?

The universal oo-cover \(\tilde{X} \) is a "stacky" universal cover \(\tilde{X} \).

Theorem: For \(X \) a crisp type, \(\tilde{X} \) is oo-connected.

Proof: \(B\pi_2X \rightarrow \ast \rightarrow SX \subseteq \ast \)

with fiber \(B\pi_2X \) delooping the second homotopy oo-group \(\pi_2X \) of \(X \).

Corollary: If \(X \) is a crisp set, then

\(\tilde{X} = \|X\|_0 \).

Proposition: For \(X \) an \(n \)-type,

\(\Omega^{k+1}X = \Omega^{k+1}SX \) for \(k \geq n+1 \).

Proof: \(\Omega^n\tilde{X} \rightarrow \ast \rightarrow \Omega^nSX \)

\[
\tilde{X} \rightarrow X \rightarrow SX
\]
1. The Universal oo-cover: Proof of
 Lemma (Shulman): \(b \) is left exact, and so preserves fiber sequences.

Lemma: For \(f : x \to y \), TFAE
1. \(bX \to x \) 2. \(\forall y : y, \text{ Fib}_y(y) \)
 \[bY \to Y \]
 is discrete.

Prop: Let \(X \) be a crisp type. Then \(b^\infty X \) is a pullback.

Proof: For \(x : X \), \(\text{ Fib}_x(x) = \Omega(SX, x) \)
 is discrete.

Aside: The "good fibrations" trick

Def: \(\pi : E \to B \) is a \(f \)-fibration if \(\forall b : B, \)
 \[\text{ Fib}_b(b) \to SE \xrightarrow{\text{fib}_\pi} SB \] is a \(f \)-equivalence.

Thm: \(\pi : E \to B \) is a \(f \)-fibration iff \(\text{ Fib}_\pi : B \to \text{Type factors} \)
 through \((-)^f : B \to SB \).

Prop: \(\pi : E \to B \) is an oo-cover iff it is a \(f \)-fibration and its fibers
 are discrete.

Lemma: If \(F \) is crisply discrete, then \(BH\text{Aut}(F) \) is.
(This fails in topological examples)

Trick ("good fibrations"):
 Let \(\pi : E \to B \). If there is a crisp \(F \) such that
 \(\forall b : B, \forall \text{ Fib}_b(b) = F^\infty \), then \(\pi \) is a \(f \)-fibration.
2. The Infinitesimal Remainder:

Lemma (Shulman): \(b|1 |X| \|_n = \|b|1 |X| \|_n \)

Corollary: If \(G \) is a \(K\)-comitative \(\infty\)-group, then \(0 \) is \(bG \) and \(bG \to G \) is a homomorphism.

Pf: Define \(B^{\infty}\|_n bG = bB^{\infty}\|_n \).

Def: The infinitesimal remainder \(g \) of \(G \) is the homotopy quotient.

(Schreiber)

\[
g = G/_{bG}
\]

\[
g = \partial G
\]

Prop: \(g \) is infinitesimal: \(bg = 0 \).

2. The Infinitesimal Remainder - What is it?

\[
bG \to G \to g \quad \text{"Mayer-Carten Form \(g\|_{bG}\""
\]

External Fact (Schreiber): In Formal Smooth \(\infty\)-groupoids, for \(G \) a Lie group, \(g = \Lambda^1_c(-;g) \) classifies closed Lie algebra valued \(1\)-forms. (I have an internal proof in a certain setting for matrix Lie groups.)

Prop: Let \(G \twoheadrightarrow H \twoheadrightarrow K \) be a crisp exact sequence of higher groups. Then

1. \(K \) is discrete iff \(\phi_*: g \to H \) is an equivalence
2. \(G \) is discrete iff \(\psi_*: \|H\| \to \|K\| \) is an equivalence.

Cor: \(\tilde{G} \twoheadrightarrow G \) gives an equivalence \(\tilde{g} \sim g \).

So: \(b\tilde{G} \to \tilde{G} \to g \) is a fiber sequence.
2. The Infinitesimal Remainder - Proof of \(\square \)

Lemma: If \(X \) is crisply discrete, then \(BLht(x) \) is. (This fails in topological examples)

Thm: Let \(\pi: E \to B \). If there is a crisply discrete \(F \) such that
\(\forall b \in B, \text{ if } \pi^{-1}(b) = F_b \), then \(\pi \) is an \(\infty \)-cover. (By the \(J \)-fibration trick)

Cor: For \(G \) a crisp hifur group, \(G \to S_\infty G \) is a pullback

proof: The fibers of \(\Theta \) are identifible with \(bG \), so it is an \(\infty \)-cover.

Cor: \(E \to g \) is the universal \(\infty \)-cover of \(g \), so
\(bE \to E \to g \to S_g \) is a fiber sequence

Eq: \(R \overset{dx}{\to} \Lambda^1_{CT} \) is the universal \(\infty \)-cover of the closed 1-form classifizer.

3. The Modal Fracture Hexagon

Using the theory of \(J \)-fibrations

So, \(S_g = bB^c \)
3. The Modal Fracture Hexagon - BBU(l)

We can continue the modal fracture hexagon as long as G can be developed:

\[\begin{array}{cccccc}
\circ & \circ & \circ & \circ & \circ & \circ \\
& & & & & \\
b E & b E & b E & b E & b E & b E \\
& & & & & \\
b G & b G & b G & b G & b G & b G \\
& & & & & \\
& b G & b G & b G & b G & b G \\
& & & & & \\
& & b G & b G & b G & b G \\
& & & & & \\
& & & b G & b G & b G \\
& & & & & \\
& & & & b G & b G \\
& & & & & \\
& & & & & b G \\
\end{array} \]

\[\text{Eg: } G \equiv U(1) \]

BBU(l) = \{1-dim C-vector spaces \} \text{ with Hermitian } \langle, \rangle

BR = \{1-dim R affine space \}

\[\Lambda_1^l \rightarrow \Lambda_1 \rightarrow \Lambda_2 \]

\[\text{so: } \Lambda_1^l = \Lambda_2 \cap \Lambda_1 \]

Via de Rham, interpret \(dq \) as closed 2-form mod exact

3. The Modal Fracture Hexagon - Other Examples

Cor(spectral cohesion): Any oo-group G of parametrized spectra is the product \(G = H \times G \) of its underlying index group and the spectrum induced at the identity

\[\text{Q: What does it mean in the other cohesions?} \]

\[\text{Eg: } \]

Stabilizer Group of \(G \) \[\text{Quotient of } G \text{ by } \text{the action of its homotopy Quotient} \]

Homotopy Quotient of stabilizer \[\text{Delooping of homotopy Quotient of Stabilizer} \]

Fixed Homotopy Quotient of \(G \)

Equivariant Modal Fracture
References

Davio Jaz Myers:
- Modal Fracture of Higher Groups (In prep)
- Good Fibrations through the Modal Prism (arXiv:1908.08034)

Urs Schreiber:
- Differential Cohomology in a Cohesive oo-topos (arXiv:1310.7390)
- Differential Cohesion and Idelic Structure (nLab)

Mike Shulman:
- Brouwer’s Fixed Point Theorem in Real-Cohesive HoTT (arXiv:1509.07589)

Egbert Rijke:
- Classifying Types (arXiv:1906.09435)

Felix Cherubini:
- Cohesive Covering Theory

Rezk: Global Homotopy Theory and Cohesive

4 Differential Cohomology

Idea: Cohesive HoTT + Synthetic Diff. geometry + Tiny Infinitesimals
+ Axiom of constancy \(\Rightarrow \) (Ordinary) Differential Cohomology.

Synthetic Differential Geometry:
- \(\mathbb{R} \) is a local, ordered field.
- \(D := \{ r \in \mathbb{R} | r^2 = 0 \} \) satisfies
 \[
 \mathbb{R}^2 \sim \mathbb{R}^D \quad \text{"every function of 1st-order infinitesimal is linear"}
 \]
- \(\mathbb{R}^2 \to \mathbb{R}^D \)
 \((a, b) \mapsto \lambda \in \mathbb{R} \cdot a + b

Tiny Infinitesimals:
- \(\mathbb{R}^D : \text{Type}^D \to \text{Type} \) has an external right adjoint
- \(L \) implies \(\#(X^D \to y) = \#(X \to y^1D) \)
- Then can define \(\wedge' \) such that \(\wedge' = \wedge \) on \(\mathbb{R} \)
- (Kock) \(\wedge' \) implies linearity!
Differential Cohesion

Def: \(d : \mathbb{R} \to \Lambda' \) is the transpose of \(\mathbb{R}^D \to \mathbb{R} \)

Axiom of Constancy: Let \(f : \mathbb{R} \to \mathbb{R} \) if \(df = 0 \), then \(f \) is constant.

\[df = \mathbb{R} - \mathbb{R} \to \Lambda'. \]

Thm: Given the axiom of constancy, we have that

\[\ker d = \mathbb{b} \mathbb{R} \]

proof: The axiom says that \(\text{const} : \ker d \to (\mathbb{R} \to \ker d) \) is an equiv.

So \(\ker d \) is a crisp, discrete subgroup of \(\mathbb{R} \), so \(\ker d \leq \mathbb{b} \mathbb{R} \).

But by transposing, we see that \(\mathbb{b} \mathbb{R} \leq \ker d \).

Cor: Every function \(f : \mathbb{R} \to \mathbb{R} \) admits a unique primitive \(\int f \) with \(\int f = 0 \).
4. Differential Cohomology

Assume we have the following exact sequences of additive abelian groups:
\[0 \to bR \to R \xrightarrow{d} \Lambda^1_{cl} \to 0 \] (can be constructed using tiny infinitesimals
\[0 \to \Lambda^1_{cl} \to \Lambda^1 \xrightarrow{d} \Lambda^2_{cl} \to 0 \] + "f: R \to R cont. iff df = 0"

And that \(\Lambda^1 \) is an \(R \)-vector space

Def(Schüte): Moduli stack of (\(\mathfrak{u} \))-bundles with connection:

\[
\begin{align*}
\mathcal{B} \mathfrak{u}(\mathfrak{l}(1)) & \xrightarrow{\text{Conn}} \Lambda^2_{cl} \\
\downarrow & \downarrow \\
\mathcal{B} \mathfrak{l}(\mathfrak{l}(1)) & \rightarrow \mathcal{B} \mathfrak{l}^1
\end{align*}
\]

so that we have fiber sequences
\[\Lambda^1_{cl} \rightarrow \mathcal{B} \mathfrak{u}(\mathfrak{l}(1)) \rightarrow \mathcal{B} \mathfrak{l}(\mathfrak{l}(1)) \] "connection 1-form"
and
\[\mathcal{B} \mathfrak{u}(\mathfrak{l}(1)) = \Lambda^1_{cl} \] "flat connection:
\[\forall \mathfrak{f} \text{ vanishing curvature}"

Lem: \(\mathcal{S} \Lambda^2_{cl} = bB^2R \) and \(\mathcal{S} \mathcal{B} \mathfrak{u}(\mathfrak{l}(1)) = B^2Z \)

Proof: Since \(\Lambda^1 \) is a vector space, \(\mathcal{S} \Lambda^1 = * \), so:

\[\mathcal{S} \Lambda^1_{cl} \rightarrow \mathcal{S} \mathcal{B} \mathfrak{u}(\mathfrak{l}(1)) \rightarrow \mathcal{S} \mathcal{B} \mathfrak{l}(\mathfrak{l}(1)) \] and \(\mathcal{S} \Lambda^1 \rightarrow \mathcal{S} \mathcal{B} \mathfrak{u}(\mathfrak{l}(1)) \rightarrow \mathcal{S} \mathcal{B} \mathfrak{l}(\mathfrak{l}(1)) \)

In general: \(\mathcal{S} \Lambda^1_{cl} = bB^2R \)

4. Differential Cohomology

\[\mathcal{B} \mathfrak{u}(\mathfrak{l}(1)) \rightarrow \mathcal{B} \Lambda^1_{cl} \]

Define \(\downarrow \xrightarrow{\text{Conn}} \downarrow \). Then

\[\mathcal{B} \mathfrak{u}(\mathfrak{l}(1)) \rightarrow \mathcal{B} \mathfrak{l}(\mathfrak{l}(1)) \]

Then

\[\begin{align*}
\mathcal{B} \mathfrak{u}(\mathfrak{l}(1)) & \xrightarrow{\text{Conn}} \Lambda^2_{cl} \\
\downarrow & \downarrow \\
\mathcal{B} \mathfrak{l}(\mathfrak{l}(1)) & \rightarrow \mathcal{B} \mathfrak{l}^1
\end{align*}\]