
Good Fibrations through the Modal Prism

David Jaz Myers

Johns Hopkins University

August 15, 2019



Plan of the Talk

Homotopy theory is the study of the ways things can be identified:

“The algebra of the ambiguity in how things are identified.”

Algebraic Topology is the study of the connectivity of space:

“We may identify points by giving continuous paths between them.”

Book HoTT is a great language to do homotopy theory, but there is
no way to say that one type is the homotopy type of another type:

In Book HoTT, we can do homotopy theory, but not algebraic topology.

To fix this, Shulman adds a system of (co)modalities including the
shape modality S which sends a type to its homotopy type. (Real
Cohesive HoTT)



Plan of the Talk

Homotopy theory is the study of the ways things can be identified:

“The algebra of the ambiguity in how things are identified.”

Algebraic Topology is the study of the connectivity of space:

“We may identify points by giving continuous paths between them.”

Book HoTT is a great language to do homotopy theory, but there is
no way to say that one type is the homotopy type of another type:

In Book HoTT, we can do homotopy theory, but not algebraic topology.

To fix this, Shulman adds a system of (co)modalities including the
shape modality S which sends a type to its homotopy type. (Real
Cohesive HoTT)



Plan of the Talk

Homotopy theory is the study of the ways things can be identified:

“The algebra of the ambiguity in how things are identified.”

Algebraic Topology is the study of the connectivity of space:

“We may identify points by giving continuous paths between them.”

Book HoTT is a great language to do homotopy theory, but there is
no way to say that one type is the homotopy type of another type:

In Book HoTT, we can do homotopy theory, but not algebraic topology.

To fix this, Shulman adds a system of (co)modalities including the
shape modality S which sends a type to its homotopy type. (Real
Cohesive HoTT)



Plan of the Talk

Homotopy theory is the study of the ways things can be identified:

“The algebra of the ambiguity in how things are identified.”

Algebraic Topology is the study of the connectivity of space:

“We may identify points by giving continuous paths between them.”

Book HoTT is a great language to do homotopy theory, but there is
no way to say that one type is the homotopy type of another type:

In Book HoTT, we can do homotopy theory, but not algebraic topology.

To fix this, Shulman adds a system of (co)modalities including the
shape modality S which sends a type to its homotopy type. (Real
Cohesive HoTT)



Plan of the Talk

Homotopy theory is the study of the ways things can be identified:

“The algebra of the ambiguity in how things are identified.”

Algebraic Topology is the study of the connectivity of space:

“We may identify points by giving continuous paths between them.”

Book HoTT is a great language to do homotopy theory, but there is
no way to say that one type is the homotopy type of another type:

In Book HoTT, we can do homotopy theory, but not algebraic topology.

To fix this, Shulman adds a system of (co)modalities including the
shape modality S which sends a type to its homotopy type. (Real
Cohesive HoTT)



Plan of the Talk

In this talk, we’ll see a modal notion of fibration, suitable for
synthetic algebraic topology.

We find this notion of modal fibration by looking at at functions
through the modal prism.

Finally, we’ll see a trick for showing that maps are S-fibrations.

We’ll use this trick to calculate the fundamental group of the circle
without using higher inductive types, and classify the n-fold covers of
the circle.



Plan of the Talk

In this talk, we’ll see a modal notion of fibration, suitable for
synthetic algebraic topology.

We find this notion of modal fibration by looking at at functions
through the modal prism.

Finally, we’ll see a trick for showing that maps are S-fibrations.

We’ll use this trick to calculate the fundamental group of the circle
without using higher inductive types, and classify the n-fold covers of
the circle.



Plan of the Talk

In this talk, we’ll see a modal notion of fibration, suitable for
synthetic algebraic topology.

We find this notion of modal fibration by looking at at functions
through the modal prism.

Finally, we’ll see a trick for showing that maps are S-fibrations.

We’ll use this trick to calculate the fundamental group of the circle
without using higher inductive types, and classify the n-fold covers of
the circle.



(Monadic) Modalities

A modality is a way of changing what it means to identify two elements.

A type X is !-modal if (−)! : X→ ! X is an equivalence.

When mapping out of ! X into a modal type Z, it suffices to map out
of X.

X ! X

Z

g

(−)!

ind!g

In particular, for any function f : X→ Y we get a function
! f : ! X→ ! Y and a naturality square:

X ! X

Y ! Y

f

(−)!

! f

(−)!



(Monadic) Modalities

A modality is a way of changing what it means to identify two elements.

A type X is !-modal if (−)! : X→ ! X is an equivalence.

When mapping out of ! X into a modal type Z, it suffices to map out
of X.

X ! X

Z

g

(−)!

ind!g

In particular, for any function f : X→ Y we get a function
! f : ! X→ ! Y and a naturality square:

X ! X

Y ! Y

f

(−)!

! f

(−)!



(Monadic) Modalities

A modality is a way of changing what it means to identify two elements.

A type X is !-modal if (−)! : X→ ! X is an equivalence.

When mapping out of ! X into a modal type Z, it suffices to map out
of X.

X ! X

Z

g

(−)!

ind!g

In particular, for any function f : X→ Y we get a function
! f : ! X→ ! Y and a naturality square:

X ! X

Y ! Y

f

(−)!

! f

(−)!



The Modal Prism

! fibf (y)

fibf(y) fib! f(y!)

X ! X

Y ! Y

δ

(−)!

f ! f

(−)!



The Modal Prism

! fibf(y)

fibf(y) fib! f(y!)

X ! X

Y ! Y

γ(−)!

δ

(−)!

f ! f

(−)!



The Modal Prism

fibf(y) fib! f(y!)

! fibf(y)
(−)!

δ

γ

The map f : X→ Y is

!-modal if (−)! is an equivalence

!-connected if ! fibf(y) is contractible

 UFP, RSS

!-étale if δ is an equivalence

a !-equivalence if fib! f(y!) is contractible

 S∞, W, R, RW

a !-fibration if γ is an equivalence

for all y : Y.



The Modal Prism

fibf(y) fib! f(y!)

! fibf(y)
(−)!

δ

γ

The map f : X→ Y is

!-modal if (−)! is an equivalence

!-connected if ! fibf(y) is contractible

 UFP, RSS

!-étale if δ is an equivalence

a !-equivalence if fib! f(y!) is contractible

 S∞, W, R, RW

a !-fibration if γ is an equivalence

for all y : Y.



The Modal Prism

fibf(y) fib! f(y!)

! fibf(y)
(−)!

δ

γ

The map f : X→ Y is

!-modal if (−)! is an equivalence

!-connected if ! fibf(y) is contractible

 UFP, RSS

!-étale if δ is an equivalence

a !-equivalence if fib! f(y!) is contractible

 S∞, W, R, RW

a !-fibration if γ is an equivalence

for all y : Y.



The Modal Prism

fibf(y) fib! f(y!)

! fibf(y)
(−)!

δ

γ

The map f : X→ Y is

!-modal if (−)! is an equivalence

!-connected if ! fibf(y) is contractible

 UFP, RSS

!-étale if δ is an equivalence

a !-equivalence if fib! f(y!) is contractible

 S∞, W, R, RW

a !-fibration if γ is an equivalence

for all y : Y.



The Two Factorization Systems

X

(x : X )× ! fibf (y) (x : X )× fib! f (y !)

Y

f



The Two Factorization Systems

(y : Y)× fibf(y)

(y : Y )× ! fibf (y) (y : Y )× fib! f (y !)

Y

fst



The Two Factorization Systems

(y : Y)× fibf(y)

(y : Y)× ! fibf(y) (y : Y)× fib! f(y!)

Y

tot((−)!) tot(δ)



The Two Factorization Systems

(y : Y)× fibf(y)

(y : Y)× ! fibf(y) (y : Y)× fib! f(y!)

Y

! -connected ! -equivalence

! -modal ! -étale



The Two Factorization Systems

(y : Y)× fibf(y)

(y : Y)× ! fibf(y) (y : Y)× fib! f(y!)

Y

! -connected ! -equivalence

! -modal

tot(γ)

! -étale



Modal Fibrations

If
fibf → E

f−→ B

is a fiber sequence, then γ is the comparison map

! fibf

! E ! B

fib! f

γ ! f

A map f : E→ B is a !-fibration if and only if ! preserves all its fibers.

An S-fibration resembles the classical Dold-Thom notion of quasi-fibration.



Modal Fibrations

If
fibf → E

f−→ B

is a fiber sequence, then γ is the comparison map

! fibf

! E ! B

fib! f

γ ! f

A map f : E→ B is a !-fibration if and only if ! preserves all its fibers.

An S-fibration resembles the classical Dold-Thom notion of quasi-fibration.



The Fundamental Group of the Circle

If we knew that the map (cos, sin) : R→ S1 were a S-fibration, then the
fiber sequence

Z→ R→ S1

would give us a fiber sequence on homotopy types:

SZ→ SR→ S S1.



The Fundamental Group of the Circle

If we knew that the map (cos, sin) : R→ S1 were a S-fibration, then the
fiber sequence

Z→ R→ S1

would give us a fiber sequence on homotopy types:

Z→ ∗ → SS1.

This calculates the loop space of the circle without using higher inductive
types.



Properties of Modal Fibrations

(y : Y)× fibf(y)

(y : Y)× ! fibf(y) (y : Y)× fib! f(y
!)

Y

! -connected ! -equivalence

! -modal

tot(γ)

! -étale

Theorem

For a map f : X→ Y, the following are equivalent:

1 f is a !-fibration,

2 The two factorizations of f agree,

3 The !-modal factor of f is !-étale,

4 The !-equivalence factor of f is !-connected,

5 ! preserves all pullbacks along f,

6 f has “!-locally constant !-fibers”.



Properties of Modal Fibrations

(y : Y)× fibf(y)

(y : Y)× ! fibf(y) (y : Y)× fib! f(y
!)

Y

! -connected ! -equivalence

! -modal

tot(γ)

! -étale

Theorem

For a map f : X→ Y, the following are equivalent:

1 f is a !-fibration,

2 The two factorizations of f agree,

3 The !-modal factor of f is !-étale,

4 The !-equivalence factor of f is !-connected,

5 ! preserves all pullbacks along f,

6 f has “!-locally constant !-fibers”.



Properties of Modal Fibrations

(y : Y)× fibf(y)

(y : Y)× ! fibf(y) (y : Y)× fib! f(y
!)

Y

! -connected ! -equivalence

! -modal

tot(γ)

! -étale

Theorem

For a map f : X→ Y, the following are equivalent:

1 f is a !-fibration,

2 The two factorizations of f agree,

3 The !-modal factor of f is !-étale,

4 The !-equivalence factor of f is !-connected,

5 ! preserves all pullbacks along f,

6 f has “!-locally constant !-fibers”.



Properties of Modal Fibrations

(y : Y)× fibf(y)

(y : Y)× ! fibf(y) (y : Y)× fib! f(y
!)

Y

! -connected ! -equivalence

! -modal

tot(γ)

! -étale

Theorem

For a map f : X→ Y, the following are equivalent:

1 f is a !-fibration,

2 The two factorizations of f agree,

3 The !-modal factor of f is !-étale,

4 The !-equivalence factor of f is !-connected,

5 ! preserves all pullbacks along f,

6 f has “!-locally constant !-fibers”.



A Modality is Lex along its Fibrations

Corollary

!-fibrations are closed under composition and pullback.

Corollary

The pullback of a !-equivalence along a !-fibration is a !-equivalence.

Corollary

For a modality !, the following are equivalent:

1 ! is lex – it preserves all pullbacks,

2 Every map is a !-fibration

3 The object classifier Type∗ → Type is a !-fibration.

4 If each map in a family is a !-fibration, then the total map is a
!-fibration,

5 For any map, the connecting map tot(γ) between its factorizations is
a !-fibration.



A Modality is Lex along its Fibrations

Corollary

!-fibrations are closed under composition and pullback.

Corollary

The pullback of a !-equivalence along a !-fibration is a !-equivalence.

Corollary

For a modality !, the following are equivalent:

1 ! is lex – it preserves all pullbacks,

2 Every map is a !-fibration

3 The object classifier Type∗ → Type is a !-fibration.

4 If each map in a family is a !-fibration, then the total map is a
!-fibration,

5 For any map, the connecting map tot(γ) between its factorizations is
a !-fibration.



A Modality is Lex along its Fibrations

Corollary

!-fibrations are closed under composition and pullback.

Corollary

The pullback of a !-equivalence along a !-fibration is a !-equivalence.

Corollary

For a modality !, the following are equivalent:

1 ! is lex – it preserves all pullbacks,

2 Every map is a !-fibration

3 The object classifier Type∗ → Type is a !-fibration.

4 If each map in a family is a !-fibration, then the total map is a
!-fibration,

5 For any map, the connecting map tot(γ) between its factorizations is
a !-fibration.



A Modality is Lex along its Fibrations

Corollary

!-fibrations are closed under composition and pullback.

Corollary

The pullback of a !-equivalence along a !-fibration is a !-equivalence.

Corollary

For a modality !, the following are equivalent:

1 ! is lex – it preserves all pullbacks,

2 Every map is a !-fibration

3 The object classifier Type∗ → Type is a !-fibration.

4 If each map in a family is a !-fibration, then the total map is a
!-fibration,

5 For any map, the connecting map tot(γ) between its factorizations is
a !-fibration.



A Modality is Lex along its Fibrations

Corollary

!-fibrations are closed under composition and pullback.

Corollary

The pullback of a !-equivalence along a !-fibration is a !-equivalence.

Corollary

For a modality !, the following are equivalent:

1 ! is lex – it preserves all pullbacks,

2 Every map is a !-fibration

3 The object classifier Type∗ → Type is a !-fibration.

4 If each map in a family is a !-fibration, then the total map is a
!-fibration,

5 For any map, the connecting map tot(γ) between its factorizations is
a !-fibration.



Showing Maps are Modal Fibrations

How do we know that (cos, sin) : R→ S1 is a S-fibration?

A map f is a !-fibration if and only if it has “!-locally constant !-fibers”.

Theorem

A map f : X→ Y is a !-fibration if and only if ! fibf factors through ! Y:

Y Type

! Y Type!

(−)!

fibf

!

If f is a !-fibration, then we take fib! f : ! Y → Type! as the factorization.



Showing Maps are Modal Fibrations

How do we know that (cos, sin) : R→ S1 is a S-fibration?

A map f is a !-fibration if and only if it has “!-locally constant !-fibers”.

Theorem

A map f : X→ Y is a !-fibration if and only if ! fibf factors through ! Y:

Y Type

! Y Type!

(−)!

fibf

!

If f is a !-fibration, then we take fib! f : ! Y → Type! as the factorization.



Showing Maps are Modal Fibrations

How do we know that (cos, sin) : R→ S1 is a S-fibration?

A map f is a !-fibration if and only if it has “!-locally constant !-fibers”.

Theorem

A map f : X→ Y is a !-fibration if and only if ! fibf factors through ! Y:

Y Type

! Y Type!

(−)!

fibf

!

If f is a !-fibration, then we take fib! f : ! Y → Type! as the factorization.



Showing Maps are Modal Fibrations

How do we know that (cos, sin) : R→ S1 is a S-fibration?

A map f is a !-fibration if and only if it has “!-locally constant !-fibers”.

Theorem

A map f : X→ Y is a !-fibration if and only if ! fibf factors through ! Y:

Y Type

! Y Type!

(−)!

fibf

!

If f is a !-fibration, then we take fib! f : ! Y → Type! as the factorization.



Showing Maps are S-Fibrations

The shape modality S has a right adjoint comodality [, so we can use a
trick.

Lemma

If X :: Type is locally discrete (S-separated), then for x :: X,

BAutX(x) :≡ (y : X)× ‖x = y‖

is discrete.

Corollary

If G :: Type is a discrete (∞-)group, then BG is also discrete.

Corollary

If G :: Type is an (∞-)group, then B S G = S BG.



Showing Maps are S-Fibrations

The shape modality S has a right adjoint comodality [, so we can use a
trick.

Lemma

If X :: Type is locally discrete (S-separated), then for x :: X,

BAutX(x) :≡ (y : X)× ‖x = y‖

is discrete.

Corollary

If G :: Type is a discrete (∞-)group, then BG is also discrete.

Corollary

If G :: Type is an (∞-)group, then B S G = S BG.



Showing Maps are S-Fibrations

The shape modality S has a right adjoint comodality [, so we can use a
trick.

Lemma

If X :: Type is locally discrete (S-separated), then for x :: X,

BAutX(x) :≡ (y : X)× ‖x = y‖

is discrete.

Corollary

If G :: Type is a discrete (∞-)group, then BG is also discrete.

Corollary

If G :: Type is an (∞-)group, then B S G = S BG.



Characterizing S-Fibrations

As a corollary, functions whose fibers have merely constant homotopy type
are fibrations.

Theorem

Let f : E→ B. If there is a F :: TypeS such that for all b : B, we have
‖F = S fibf(b)‖, then f is a S-fibration.

Proof.

Since F is a crisp element of a locally discrete type, BAut(F) is
discrete.

By hypothesis, S fibf : B→ TypeS factors through BAut(F) and so

also through (−)S : B→ S B.

So, S fibf is locally constant, and therefore f is a S-fibration.



Characterizing S-Fibrations

As a corollary, functions whose fibers have merely constant homotopy type
are fibrations.

Theorem

Let f : E→ B. If there is a F :: TypeS such that for all b : B, we have
‖F = S fibf(b)‖, then f is a S-fibration.

Proof.

Since F is a crisp element of a locally discrete type, BAut(F) is
discrete.

By hypothesis, S fibf : B→ TypeS factors through BAut(F) and so

also through (−)S : B→ S B.

So, S fibf is locally constant, and therefore f is a S-fibration.



Characterizing S-Fibrations

As a corollary, functions whose fibers have merely constant homotopy type
are fibrations.

Theorem

Let f : E→ B. If there is a F :: TypeS such that for all b : B, we have
‖F = S fibf(b)‖, then f is a S-fibration.

Proof.

Since F is a crisp element of a locally discrete type, BAut(F) is
discrete.

By hypothesis, S fibf : B→ TypeS factors through BAut(F) and so

also through (−)S : B→ S B.

So, S fibf is locally constant, and therefore f is a S-fibration.



Characterizing S-Fibrations

As a corollary, functions whose fibers have merely constant homotopy type
are fibrations.

Theorem

Let f : E→ B. If there is a F :: TypeS such that for all b : B, we have
‖F = S fibf(b)‖, then f is a S-fibration.

Proof.

Since F is a crisp element of a locally discrete type, BAut(F) is
discrete.

By hypothesis, S fibf : B→ TypeS factors through BAut(F) and so

also through (−)S : B→ S B.

So, S fibf is locally constant, and therefore f is a S-fibration.



Examples of S-Fibrations

Theorem

Let f : E→ B. If there is a F :: TypeS such that for all b : B, we have
‖F = S fibf(b)‖, then f is a S-fibration.

Motto

If you were comfortable writing

“F→ E
f−→ B”,

or talking about “the fiber F”, then f is a fibration.

(cos, sin) : R→ S1, with F :≡ Z,

The Hopf fibration h : S3 → S2, with F :≡ SS1, and other Hopf-style
fibrations,

The Serre fibration s : SO(3)→ S2, with F :≡ S SO(2)



Examples of S-Fibrations

Theorem

Let f : E→ B. If there is a F :: TypeS such that for all b : B, we have
‖F = S fibf(b)‖, then f is a S-fibration.

Motto

If you were comfortable writing

“F→ E
f−→ B”,

or talking about “the fiber F”, then f is a fibration.

(cos, sin) : R→ S1, with F :≡ Z,

The Hopf fibration h : S3 → S2, with F :≡ SS1, and other Hopf-style
fibrations,

The Serre fibration s : SO(3)→ S2, with F :≡ S SO(2)



Classifying the Covers of the Circle, Modally

Definition (Wellen)

A covering is a S1-étale map c : E→ B whose fibers are sets, where S1 is
the modality whose modal types are discrete groupoids.

Corollary

Let c : E→ B. If there is a F :: SetS such that for all b : B, we have
‖F = fibf(b)‖, then c is a covering.

Definition

An n-fold covering c : E→ B is a map whose fibers have n elements.

Question

What are the n-fold covers of the circle S1?



Classifying the Covers of the Circle, Modally

Definition (Wellen)

A covering is a S1-étale map c : E→ B whose fibers are sets, where S1 is
the modality whose modal types are discrete groupoids.

Corollary

Let c : E→ B. If there is a F :: SetS such that for all b : B, we have
‖F = fibf(b)‖, then c is a covering.

Definition

An n-fold covering c : E→ B is a map whose fibers have n elements.

Question

What are the n-fold covers of the circle S1?



Classifying the Covers of the Circle, Modally

Definition (Wellen)

A covering is a S1-étale map c : E→ B whose fibers are sets, where S1 is
the modality whose modal types are discrete groupoids.

Corollary

Let c : E→ B. If there is a F :: SetS such that for all b : B, we have
‖F = fibf(b)‖, then c is a covering.

Definition

An n-fold covering c : E→ B is a map whose fibers have n elements.

Question

What are the n-fold covers of the circle S1?



Classifying the Covers of the Circle, Modally

Definition (Wellen)

A covering is a S1-étale map c : E→ B whose fibers are sets, where S1 is
the modality whose modal types are discrete groupoids.

Corollary

Let c : E→ B. If there is a F :: SetS such that for all b : B, we have
‖F = fibf(b)‖, then c is a covering.

Definition

An n-fold covering c : E→ B is a map whose fibers have n elements.

Question

What are the n-fold covers of the circle S1?



Classifying the Covers of the Circle, Modally

• An n-fold cover with an identification of a fiber with
{1, . . . , n} is a pointed map C : S1 ·→BAut(n).

• Since {1, . . . , n} is discrete, so is BAut(n) and there-
fore C factors uniquely through SS1.

S1 BAut(n)

SS1

C

(−)S

Bϕ

• But SS1 is a BZ, so this corresponds to a homomor-
phism ϕ : Z→ Aut(n): a permutation of n elements.



Classifying the Covers of the Circle, Modally

• An n-fold cover with an identification of a fiber with
{1, . . . , n} is a pointed map C : S1 ·→BAut(n).

• Since {1, . . . , n} is discrete, so is BAut(n) and there-
fore C factors uniquely through SS1.

S1 BAut(n)

SS1

C

(−)S

Bϕ

• But SS1 is a BZ, so this corresponds to a homomor-
phism ϕ : Z→ Aut(n): a permutation of n elements.



Classifying the Covers of the Circle, Modally

• An n-fold cover with an identification of a fiber with
{1, . . . , n} is a pointed map C : S1 ·→BAut(n).

• Since {1, . . . , n} is discrete, so is BAut(n) and there-
fore C factors uniquely through SS1.

S1 BAut(n)

SS1

C

(−)S

Bϕ

• But SS1 is a BZ, so this corresponds to a homomor-
phism ϕ : Z→ Aut(n): a permutation of n elements.



Classifying the Covers of the Circle, Modally

• It looks as though the connected components of the
total space correspond to the cycle type of the per-
mutation. Can we prove this?

S1 BAut(n)

SS1

C

(−)S

Bϕ

• The cycle type is the set of orbits of the action of ϕ
on the fiber, or∥∥(t : S S1)× Bϕ(t)

∥∥
0
.



Classifying the Covers of the Circle, Modally

• It looks as though the connected components of the
total space correspond to the cycle type of the per-
mutation. Can we prove this?

S1 BAut(n)

SS1

C

(−)S

Bϕ

• The cycle type is the set of orbits of the action of ϕ
on the fiber, or∥∥(t : S S1)× Bϕ(t)

∥∥
0
.



Classifying the Covers of the Circle, Modally

• It looks as though the connected components of the
total space correspond to the cycle type of the per-
mutation. Can we prove this?

S1 BAut(n)

SS1

C

(−)S

Bϕ

• The cycle type is the set of orbits of the action of ϕ
on the fiber, or∥∥(t : S S1)× Bϕ(t)

∥∥
0
.



Classifying the Covers of the Circle, Modally

S1 BAut(n)

SS1

C

(−)S

Bϕ

(s : S1)× C(s) (u : S S1)× Bϕ(u)

S1 S S1

(−)S

The square is a pullback and the bottom map S-
connected, so the top map is as well. Therefore,
we get an equivalence

S((s : S1)× C(s)) ' (u : S S1)× Bϕ(u)

and so an equivalence on their 0-truncations.



Classifying the Covers of the Circle, Modally

(s : S1)× C(s) (u : S S1)× Bϕ(u)

S1 SS1

(−)S

The square is a pullback and the bottom map S-
connected, so the top map is as well. Therefore,
we get an equivalence

S((s : S1)× C(s)) ' (u : S S1)× Bϕ(u)

and so an equivalence on their 0-truncations.



Classifying the Covers of the Circle, Modally

(s : S1)× C(s) (u : S S1)× Bϕ(u)

S1 SS1

(−)S

The square is a pullback and the bottom map S-
connected, so the top map is as well.

Therefore,
we get an equivalence

S((s : S1)× C(s)) ' (u : S S1)× Bϕ(u)

and so an equivalence on their 0-truncations.



Classifying the Covers of the Circle, Modally

(s : S1)× C(s) (u : S S1)× Bϕ(u)

S1 SS1

(−)S

The square is a pullback and the bottom map S-
connected, so the top map is as well. Therefore,
we get an equivalence

S((s : S1)× C(s)) ' (u : S S1)× Bϕ(u)

and so an equivalence on their 0-truncations.



References

•••••••• [UFP] Homotopy Type Theory, Univalent Foundations Project, 2013

[RSS] Modalities in HoTT, Rijke, Shulman, Spitters, 2017,

[S∞] Differential Cohomology in a Cohesive ∞-Topos, Schreiber,
2013,

[S[] Brouwer’s Fixed Point Theorem in Real-Cohesive HoTT.
Shulman, 2018

[W] Formalizing Cartan Geometry in Modal HoTT, Wellen, 2017

[R] Classifying Types, Rijke, 2018

[RW] Modal Descent, Rijke, Wellen, TBD

[CORS] Localization in HoTT, Christensen, Opie, Rijke, Scoccola,
2018



Just
Lemma

If X :: Type is locally discrete (S-separated), then for x :: X,

BAutX(x) :≡ (y : X)× ‖x = y‖

is discrete.


