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Plan of the Talk

Homotopy theory is the study of the ways things can be identified:

“The algebra of the ambiguity in how things are identified.”

Algebraic Topology is the study of the connectivity of space:

“We may identify points by giving continuous paths between them.”

Book HoTT is a great language to do homotopy theory, but there is
no way to say that one type is the homotopy type of another type:

In Book HoTT, we can do homotopy theory, but not algebraic topology.

To fix this, Shulman adds a system of (co)modalities including the
shape modality S which sends a type to its homotopy type. (Real
Cohesive HoTT)
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Plan of the Talk

In this talk, we’ll see a modal notion of fibration, suitable for
synthetic algebraic topology.

We find this notion of modal fibration by looking at at functions
through the modal prism.

Finally, we’ll see a trick for showing that maps are S-fibrations.

We’ll use this trick to calculate the fundamental group of the circle
without using higher inductive types, and classify the n-fold covers of
the circle.
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(Monadic) Modalities

A modality is a way of changing what it means to identify two elements.

A type X is !-modal if (−)! : X→ ! X is an equivalence.

When mapping out of ! X into a modal type Z, it suffices to map out
of X.

X ! X

Z

g

(−)!

ind!g

In particular, for any function f : X→ Y we get a function
! f : ! X→ ! Y and a naturality square:

X ! X

Y ! Y

f

(−)!

! f

(−)!
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The Modal Prism
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The Modal Prism

fibf(y) fib! f(y!)

! fibf(y)
(−)!

δ

γ

The map f : X→ Y is

!-modal if (−)! is an equivalence

!-connected if ! fibf(y) is contractible

 UFP, RSS

!-étale if δ is an equivalence

a !-equivalence if fib! f(y!) is contractible

 S∞, W, R, RW

a !-fibration if γ is an equivalence

for all y : Y.
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X
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Modal Fibrations

If
fibf → E

f−→ B

is a fiber sequence, then γ is the comparison map

! fibf

! E ! B

fib! f

γ ! f

A map f : E→ B is a !-fibration if and only if ! preserves all its fibers.

An S-fibration resembles the classical Dold-Thom notion of quasi-fibration.
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The Fundamental Group of the Circle

If we knew that the map (cos, sin) : R→ S1 were a S-fibration, then the
fiber sequence

Z→ R→ S1

would give us a fiber sequence on homotopy types:

SZ→ SR→ S S1.



The Fundamental Group of the Circle

If we knew that the map (cos, sin) : R→ S1 were a S-fibration, then the
fiber sequence

Z→ R→ S1

would give us a fiber sequence on homotopy types:

Z→ ∗ → SS1.

This calculates the loop space of the circle without using higher inductive
types.



Properties of Modal Fibrations

(y : Y)× fibf(y)

(y : Y)× ! fibf(y) (y : Y)× fib! f(y
!)

Y

! -connected ! -equivalence

! -modal

tot(γ)

! -étale

Theorem

For a map f : X→ Y, the following are equivalent:

1 f is a !-fibration,

2 The two factorizations of f agree,

3 The !-modal factor of f is !-étale,

4 The !-equivalence factor of f is !-connected,

5 ! preserves all pullbacks along f,

6 f has “!-locally constant !-fibers”.
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A Modality is Lex along its Fibrations

Corollary

!-fibrations are closed under composition and pullback.

Corollary

The pullback of a !-equivalence along a !-fibration is a !-equivalence.

Corollary

For a modality !, the following are equivalent:

1 ! is lex – it preserves all pullbacks,

2 Every map is a !-fibration

3 The object classifier Type∗ → Type is a !-fibration.

4 If each map in a family is a !-fibration, then the total map is a
!-fibration,

5 For any map, the connecting map tot(γ) between its factorizations is
a !-fibration.
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Showing Maps are Modal Fibrations

How do we know that (cos, sin) : R→ S1 is a S-fibration?

A map f is a !-fibration if and only if it has “!-locally constant !-fibers”.

Theorem

A map f : X→ Y is a !-fibration if and only if ! fibf factors through ! Y:

Y Type

! Y Type!

(−)!

fibf

!

If f is a !-fibration, then we take fib! f : ! Y → Type! as the factorization.
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Showing Maps are S-Fibrations

The shape modality S has a right adjoint comodality [, so we can use a
trick.

Lemma

If X :: Type is locally discrete (S-separated), then for x :: X,

BAutX(x) :≡ (y : X)× ‖x = y‖

is discrete.

Corollary

If G :: Type is a discrete (∞-)group, then BG is also discrete.

Corollary

If G :: Type is an (∞-)group, then B S G = S BG.



Showing Maps are S-Fibrations

The shape modality S has a right adjoint comodality [, so we can use a
trick.

Lemma

If X :: Type is locally discrete (S-separated), then for x :: X,

BAutX(x) :≡ (y : X)× ‖x = y‖

is discrete.

Corollary

If G :: Type is a discrete (∞-)group, then BG is also discrete.

Corollary

If G :: Type is an (∞-)group, then B S G = S BG.



Showing Maps are S-Fibrations

The shape modality S has a right adjoint comodality [, so we can use a
trick.

Lemma

If X :: Type is locally discrete (S-separated), then for x :: X,

BAutX(x) :≡ (y : X)× ‖x = y‖

is discrete.

Corollary

If G :: Type is a discrete (∞-)group, then BG is also discrete.

Corollary

If G :: Type is an (∞-)group, then B S G = S BG.



Characterizing S-Fibrations

As a corollary, functions whose fibers have merely constant homotopy type
are fibrations.

Theorem

Let f : E→ B. If there is a F :: TypeS such that for all b : B, we have
‖F = S fibf(b)‖, then f is a S-fibration.

Proof.

Since F is a crisp element of a locally discrete type, BAut(F) is
discrete.

By hypothesis, S fibf : B→ TypeS factors through BAut(F) and so

also through (−)S : B→ S B.

So, S fibf is locally constant, and therefore f is a S-fibration.
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Examples of S-Fibrations

Theorem

Let f : E→ B. If there is a F :: TypeS such that for all b : B, we have
‖F = S fibf(b)‖, then f is a S-fibration.

Motto

If you were comfortable writing

“F→ E
f−→ B”,

or talking about “the fiber F”, then f is a fibration.

(cos, sin) : R→ S1, with F :≡ Z,

The Hopf fibration h : S3 → S2, with F :≡ SS1, and other Hopf-style
fibrations,

The Serre fibration s : SO(3)→ S2, with F :≡ S SO(2)
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Classifying the Covers of the Circle, Modally

Definition (Wellen)

A covering is a S1-étale map c : E→ B whose fibers are sets, where S1 is
the modality whose modal types are discrete groupoids.

Corollary

Let c : E→ B. If there is a F :: SetS such that for all b : B, we have
‖F = fibf(b)‖, then c is a covering.

Definition

An n-fold covering c : E→ B is a map whose fibers have n elements.

Question

What are the n-fold covers of the circle S1?
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Classifying the Covers of the Circle, Modally

• An n-fold cover with an identification of a fiber with
{1, . . . , n} is a pointed map C : S1 ·→BAut(n).

• Since {1, . . . , n} is discrete, so is BAut(n) and there-
fore C factors uniquely through SS1.

S1 BAut(n)

SS1

C

(−)S

Bϕ

• But SS1 is a BZ, so this corresponds to a homomor-
phism ϕ : Z→ Aut(n): a permutation of n elements.
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Classifying the Covers of the Circle, Modally

• It looks as though the connected components of the
total space correspond to the cycle type of the per-
mutation. Can we prove this?

S1 BAut(n)

SS1

C

(−)S

Bϕ

• The cycle type is the set of orbits of the action of ϕ
on the fiber, or∥∥(t : S S1)× Bϕ(t)

∥∥
0
.
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on the fiber, or∥∥(t : S S1)× Bϕ(t)

∥∥
0
.



Classifying the Covers of the Circle, Modally

S1 BAut(n)

SS1

C

(−)S

Bϕ

(s : S1)× C(s) (u : S S1)× Bϕ(u)

S1 S S1

(−)S

The square is a pullback and the bottom map S-
connected, so the top map is as well. Therefore,
we get an equivalence

S((s : S1)× C(s)) ' (u : S S1)× Bϕ(u)

and so an equivalence on their 0-truncations.
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Just
Lemma

If X :: Type is locally discrete (S-separated), then for x :: X,

BAutX(x) :≡ (y : X)× ‖x = y‖

is discrete.


