Homotopy Type Theory for doing Category Theory

David Jaz Myers

Johns Hopkins University

March 26, 2020

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Part 1: Homotopy Type Theory

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

It depends what type of things they are.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

It depends what type of things they are.

 To identify the affine plane with ℝ², we need to choose a point to serve as the origin.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

It depends what type of things they are.

- To identify the affine plane with ℝ², we need to choose a point to serve as the origin.
- To identify the tangent space of S² at the point (¹/_{√3}, ¹/_{√3}, ¹/_{√3}) with ℝ², we need to give a basis {∂₁, ∂₂} of it. Then we can identify any tangent vector

$$v = v^1 \partial_1 + v^2 \partial_2$$
 with $\begin{vmatrix} v^1 \\ v^2 \end{vmatrix}$

It depends what type of things they are.

- To identify the affine plane with ℝ², we need to choose a point to serve as the origin.
- To identify the tangent space of \mathbb{S}^2 at the point $(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$ with \mathbb{R}^2 , we need to give a basis $\{\partial_1, \partial_2\}$ of it. Then we can identify any tangent vector

$$\mathsf{v} = \mathsf{v}^1 \partial_1 + \mathsf{v}^2 \partial_2$$
 with $\begin{bmatrix} \mathsf{v}^1 \\ \mathsf{v}^2 \end{bmatrix}$

 To identify Hⁿ(Sⁿ; Z) with Z, we must choose an orientation for the n-sphere Sⁿ.

It depends what type of things they are.

- To identify the affine plane with ℝ², we need to choose a point to serve as the origin.
- To identify the tangent space of \mathbb{S}^2 at the point $(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$ with \mathbb{R}^2 , we need to give a basis $\{\partial_1, \partial_2\}$ of it. Then we can identify any tangent vector

$$\mathsf{v} = \mathsf{v}^1 \partial_1 + \mathsf{v}^2 \partial_2$$
 with $\begin{bmatrix} \mathsf{v}^1 \\ \mathsf{v}^2 \end{bmatrix}$

- To identify Hⁿ(Sⁿ; Z) with Z, we must choose an orientation for the n-sphere Sⁿ.
- To identify the natural number n such that $\pi_4(\mathbb{S}^3)$ is isomorphic to $\mathbb{Z}_{/n}$ with the number 2, we need to prove that n equals 2.

Type Theory

A *type* is a type of mathematical thing. Type theory gives *rules* for making new types and new *terms* of them. It is a full foundation of mathematics, from scratch.

> a term : its type a : A 3 : \mathbb{N} \mathbb{N} : Set T_pM : Vect_R Vect_R : Type

$\mathbf{a}:\mathbf{A}$

is not a "proposition" - it is not up for debate.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$\mathbf{a}:\mathbf{A}$

is not a "proposition" - it is not up for debate.

 Saying 3 : N is a judgement: the fact that 3 is a number is just part of what we mean by 3.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

a:A

is not a "proposition" – it is not up for debate.

• Saying 3 : N is a **judgement**: the fact that 3 is a *number* is just part of what we mean by 3.

 3: Z and 3: Q are different 3s. For example, the second is a unit while the first is not.

a : A

is not a "proposition" - it is not up for debate.

- Saying 3 : N is a judgement: the fact that 3 is a number is just part of what we mean by 3.
- 3 : Z and 3 : Q are *different* 3s. For example, the second is a unit while the first is not.
- Similarly, we use " $a \equiv b$ " to say that a is *judged* to be equal to b by *definition*.

a : A

is not a "proposition" - it is not up for debate.

- Saying 3 : N is a judgement: the fact that 3 is a number is just part of what we mean by 3.
- 3: Z and 3: Q are different 3s. For example, the second is a unit while the first is not.
- Similarly, we use "a ≡ b" to say that a is *judged* to be equal to b by *definition*. For example,

 $3 \equiv \operatorname{suc}(\operatorname{suc}(\operatorname{suc}(0))).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For a and b : A,

 $a =_A b : Type$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is the type of *identifications* of a with b as elements of A.^a

^aWe'll define this in a few slides

For a and b : A,

 $\mathsf{a} =_\mathsf{A} \mathsf{b} : \textbf{Type}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is the type of *identifications* of a with b as elements of A.^a

^aWe'll define this in a few slides

For V and W : Vect_ℝ, then V = W is the type of ℝ-linear isomorphisms between V and W.

For a and b : A,

 $\mathsf{a} =_\mathsf{A} \mathsf{b} : \textbf{Type}$

is the type of *identifications* of a with b as elements of A.^a

^aWe'll define this in a few slides

- For V and W : Vect_ℝ, then V = W is the type of ℝ-linear isomorphisms between V and W.
- For X and Y : **Set**, then X = Y is the type of bijections of between them.

For a and b : A,

 $\mathsf{a} =_\mathsf{A} \mathsf{b} : \textbf{Type}$

is the type of *identifications* of a with b as elements of A.^a

^aWe'll define this in a few slides

- For V and W : Vect_ℝ, then V = W is the type of ℝ-linear isomorphisms between V and W.
- For X and Y : **Set**, then X = Y is the type of bijections of between them.

• For M and N : Mfd_{∞} , then M = N is the type of smooth diffeomorphisms between them.

For a and b : A,

 $\mathsf{a} =_\mathsf{A} \mathsf{b} : \textbf{Type}$

is the type of *identifications* of a with b as elements of A.^a

^aWe'll define this in a few slides

- For V and W : Vect_ℝ, then V = W is the type of ℝ-linear isomorphisms between V and W.
- For X and Y : **Set**, then X = Y is the type of bijections of between them.
- For M and N : Mfd_{∞} , then M = N is the type of smooth diffeomorphisms between them.
- For n and m : \mathbb{N} , then n = m has an element if and only if n equals m

- there is at most one way to identify two natural numbers.

For a and b : A,

 $\mathsf{a} =_\mathsf{A} \mathsf{b} : \textbf{Type}$

is the type of *identifications* of a with b as elements of A.^a

^aWe'll define this in a few slides

- For V and W : Vect_ℝ, then V = W is the type of ℝ-linear isomorphisms between V and W.
- For X and Y : **Set**, then X = Y is the type of bijections of between them.
- For M and N : Mfd_{∞} , then M = N is the type of smooth diffeomorphisms between them.
- For n and m : \mathbb{N} , then n = m has an element if and only if n equals m
 - there is at most one way to identify two natural numbers.

Axiom (Univalence)

If X and Y are types, then X = Y is the type of equivalences of X with Y.

Every thing is a certain kind of thing.

• In a type theory, every free variable must be annotated with its type.

Every thing is a certain kind of thing.

- In a type theory, every free variable must be annotated with its type.
- Given types A and B depending on A,

 $(a:A) \rightarrow B(a)$ or, sometimes, $\Pi_{a:A}B(a)$

is the **type of functions from A to B**. (We write $A \rightarrow B$ if B doesn't depend on A.)

Every thing is a certain kind of thing.

- In a type theory, every free variable must be annotated with its type.
- Given types A and B depending on A,

 $(a:A) \rightarrow B(a)$ or, sometimes, $\Pi_{a:A}B(a)$

- is the **type of functions from A to B**. (We write $A \rightarrow B$ if B doesn't depend on A.)
- To define a function f : (a : A) → B(a), assume a free a : A, and write down an element f(a) : B(a); then f is the function a → f(a).

Every thing is a certain kind of thing.

- In a type theory, every free variable must be annotated with its type.
- Given types A and B depending on A,

 $(a:A) \rightarrow B(a)$ or, sometimes, $\Pi_{a:A}B(a)$

- is the **type of functions from A to B**. (We write $A \rightarrow B$ if B doesn't depend on A.)
- To define a function f : (a : A) → B(a), assume a free a : A, and write down an element f(a) : B(a); then f is the function a → f(a).

• E.g., if M : Manifold and p : M, then we can define the tangent space T_pM : VectorSpace. So $p \mapsto T_pM : M \rightarrow VectorSpace$.

Every thing is a certain kind of thing.

- In a type theory, every free variable must be annotated with its type.
- Given types A and B depending on A,

 $(a:A) \rightarrow B(a)$ or, sometimes, $\Pi_{a:A}B(a)$

- is the **type of functions from A to B**. (We write $A \rightarrow B$ if B doesn't depend on A.)
- To define a function f : (a : A) → B(a), assume a free a : A, and write down an element f(a) : B(a); then f is the function a → f(a).
- E.g., if M : Manifold and p : M, then we can define the tangent space T_pM : VectorSpace. So $p \mapsto T_pM : M \rightarrow VectorSpace$.
- Since for any p: M, we have that $0: T_pM$, we get a function $p \mapsto 0: (p:M) \to T_pM$ the zero vector field.

Pairs

Given A : **Type** with B(a) depending on a : A, then (a : A) × B(a) or, sometimes, $\Sigma_{a:A}B(a)$ is the type of pairs (a, b) with a : A and b : B(a).

Pairs

Given A : **Type** with B(a) depending on a : A, then (a : A) × B(a) or, sometimes, $\Sigma_{a:A}B(a)$ is the type of pairs (a, b) with a : A and b : B(a).

• The type $(p:M) \times T_pM$ is the total space of tangent bundle.

Pairs

Given A : **Type** with B(a) depending on a : A, then

 $(a:A) \times B(a)$ or, sometimes, $\Sigma_{a:A}B(a)$

is the type of pairs (a, b) with a : A and b : B(a).

- The type $(p:M) \times T_pM$ is the total space of tangent bundle.
- Note that $(p:M) \to T_pM$ is the type of sections to $(p,v) \mapsto p: (p:M) \times T_pM \to M$

If a type A is an *inductive type*, we may assume that a free variable a : A is of one several prescribed forms.

We may assume a free natural number n : N is either of the form
n ≡ 0, or
n ≡ suc(m) with m : N.

If a type A is an *inductive type*, we may assume that a free variable a : A is of one several prescribed forms.

- We may assume a free natural number n : N is either of the form
 n ≡ 0, or
 n ≡ suc(m) with m : N.
- To define + : N → (N → N), we assume a free variable n : N and seek a function of type N → N.

If a type A is an *inductive type*, we may assume that a free variable a : A is of one several prescribed forms.

- We may assume a free natural number n : N is either of the form
 n ≡ 0, or
 n ≡ suc(m) with m : N.
- To define + : N → (N → N), we assume a free variable n : N and seek a function of type N → N.

1 If $n \equiv 0$, then we have $id \equiv x \mapsto x : \mathbb{N} \to \mathbb{N}$, or

If a type A is an *inductive type*, we may assume that a free variable a : A is of one several prescribed forms.

- We may assume a free natural number n : N is either of the form
 1 n ≡ 0, or
 2 n ≡ suc(m) with m : N.
- To define + : N → (N → N), we assume a free variable n : N and seek a function of type N → N.

1 If $n \equiv 0$, then we have $id \equiv x \mapsto x : \mathbb{N} \to \mathbb{N}$, or

2 If $n \equiv suc(m)$, then we have $x \mapsto suc(x+m) : \mathbb{N} \to \mathbb{N}$

If a type A is an *inductive type*, we may assume that a free variable a : A is of one several prescribed forms.

- We may assume a free natural number n : N is either of the form
 1 n ≡ 0, or
 2 n ≡ suc(m) with m : N.
- To define + : N → (N → N), we assume a free variable n : N and seek a function of type N → N.

If $n \equiv 0$, then we have $id \equiv x \mapsto x : \mathbb{N} \to \mathbb{N}$, or

2 If $n \equiv suc(m)$, then we have $x \mapsto suc(x+m) : \mathbb{N} \to \mathbb{N}$

In total, we have

 $n \mapsto \begin{cases} x \mapsto x & \text{if } n \equiv 0 \\ x \mapsto \operatorname{suc}(x+m) & \text{if } n \equiv \operatorname{suc}(m). \end{cases} \colon \mathbb{N} \to (\mathbb{N} \to \mathbb{N})$

Given any two terms a, b : A, we have a type $a =_A b$ of identifications of a with b.

• We may assume that free variables $b:\mathsf{A}$ and $p:\mathsf{a}=_\mathsf{A} b$ are of the form

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• refl : $a =_A a$.

Given any two terms a, b : A, we have a type $a =_A b$ of identifications of a with b.

• We may assume that free variables b:A and $p:a=_A b$ are of the form

• refl : $a =_A a$.

• To define sym : (a, b : A) \rightarrow a =_A b \rightarrow b =_A a, assume that a, b : A and p : a =_A b are free variables.

Given any two terms a, b : A, we have a type $a =_A b$ of identifications of a with b.

• We may assume that free variables b:A and $p:a=_A b$ are of the form

• refl : $a =_A a$.

• To define sym : (a, b : A) \rightarrow a =_A b \rightarrow b =_A a, assume that a, b : A and p : a =_A b are free variables.

1 If $b \equiv a$ and $p \equiv refl$, then $refl : b =_A a$.

Given any two terms a, b : A, we have a **type** $a =_A b$ of identifications of a with b.

• We may assume that free variables b:A and $p:a=_A b$ are of the form

• refl : $a =_A a$.

To define sym: (a, b : A) → a =_A b → b =_A a, assume that a, b : A and p : a =_A b are free variables.
If b ≡ a and p ≡ refl, then refl : b =_A a. So,

 $\mathsf{a},\,\mathsf{b},\,\mathsf{p}\mapsto \Big\{\mathsf{refl}\quad \mathsf{if}\,\, p\equiv\mathsf{refl}\,:(\mathsf{a},\,\mathsf{b}:\mathsf{A})\to\mathsf{a}=_\mathsf{A}\mathsf{b}\to\mathsf{b}=_\mathsf{A}\mathsf{a}.$

(日) (同) (三) (三) (三) (○) (○)

Composing Identifications

Proposition Given p : a = b and q : b = c, we get an identification $p \bullet q : a = c$.

Proposition Given p : a = b, we have refleft_p : refl • p = p, and similarly on the right.

Proposition

Given p : a = b, q : b = c, and r : c = d, we have an identification

 $\mathsf{assoc}_{\mathsf{p},\mathsf{q},\mathsf{r}}:(\mathsf{p} \bullet \mathsf{q}) \bullet \mathsf{r} = \mathsf{p} \bullet (\mathsf{q} \bullet \mathsf{r})$

Composing Identifications

Proposition Given p : a = b and q : b = c, we get an identification $p \bullet q : a = c$.

Proposition Given p : a = b, we have refleft_p : refl $\bullet p = p$, and similarly on the right.

Proposition

Given p : a = b, q : b = c, and r : c = d, we have an identification

$$\operatorname{assoc}_{p,q,r}:(p \bullet q) \bullet r = p \bullet (q \bullet r)$$

Proposition

... and as my coherences as you like!

Every Function a Functor

Proposition

Let $f : A \rightarrow B$ be a function and suppose $p : a_1 = a_2$. Then we have

 $f_*p: f(a_1) = f(a_2).$

Proposition

Let $f:A\to B$ be a function and suppose $p:a_1=a_2$ and $q:a_2=a_3.$ Then we have

$$\mathsf{funct}_{\mathsf{p},\mathsf{q}}:\mathsf{f}_*(\mathsf{p}\bullet\mathsf{q})=\mathsf{f}_*\mathsf{p}\bullet\mathsf{f}_*\mathsf{q}.$$

Identifying Functions and Pairs

Proposition Let f, g : (a : A) \rightarrow B(a) be functions. Then (f = g) = (a : A) \rightarrow (fa = ga).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Identifying Functions and Pairs

Proposition

Let f, g : (a : A) \rightarrow B(a) be functions. Then

 $(f = g) = (a : A) \rightarrow (fa = ga).$

Proposition

Let (a_1, b_1) , (a_2, b_2) : $(a : A) \times B(a)$ be pairs. Then

 $\big((a_1,b_1)=(a_2,b_2)\big)=(p:a_1=a_2)\times (\mathsf{B}_*p(b_1)=b_2).$

Definition

A magma is a type A together with a binary operation $+ : A \times A \rightarrow A$:

 $Magma :\equiv (A : Type) \times (A \times A \rightarrow A).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let **BinOp**(A) := $(A \times A) \rightarrow A$.

 $((\mathsf{A},+)=(\mathsf{B},\oplus))$

Definition

A magma is a type A together with a binary operation $+ : A \times A \rightarrow A$:

```
Magma := (A : Type) \times (A \times A \rightarrow A).
```

Let **BinOp**(A) := $(A \times A) \rightarrow A$.

 $((A, +) = (B, \oplus))$ $= (e : A = B) \times (BinOp_*e(+) = \oplus)$

Definition

A magma is a type A together with a binary operation $+ : A \times A \rightarrow A$:

```
Magma := (A : Type) \times (A \times A \rightarrow A).
```

Let **BinOp**(A) := $(A \times A) \rightarrow A$.

$$((A, +) = (B, \oplus))$$

= (e : A = B) × (**BinOp**_{*}e(+) = \oplus)
= (e : A = B) × ((b₁, b₂) : B × B) → (**BinOp**_{*}e(+)(b₁, b₂) = b₁ \oplus b₂)

Definition

A magma is a type A together with a binary operation $+ : A \times A \rightarrow A$:

```
Magma := (A : Type) \times (A \times A \rightarrow A).
```

Let **BinOp**(A) := $(A \times A) \rightarrow A$.

$$((A, +) = (B, \oplus))$$

= (e : A = B) × (**BinOp**_{*}e(+) = \oplus)
= (e : A = B) × ((b₁, b₂) : B × B) → (**BinOp**_{*}e(+)(b₁, b₂) = b₁ \oplus b₂)
= (e : A = B) × ((b₁, b₂) : B × B) → (e(e⁻¹ b₁ + e⁻¹ b₂) = b₁ \oplus b₂)

Definition

A magma is a type A together with a binary operation $+ : A \times A \rightarrow A$:

Magma := $(A : Type) \times (A \times A \rightarrow A)$.

Let **BinOp**(A) := $(A \times A) \rightarrow A$.

$$\begin{aligned} &((A, +) = (B, \oplus)) \\ &= (e : A = B) \times (BinOp_*e(+) = \oplus) \\ &= (e : A = B) \times ((b_1, b_2) : B \times B) \to (BinOp_*e(+)(b_1, b_2) = b_1 \oplus b_2) \\ &= (e : A = B) \times ((b_1, b_2) : B \times B) \to (e(e^{-1} b_1 + e^{-1} b_2) = b_1 \oplus b_2) \\ &= (e : A = B) \times ((b_1, b_2) : B \times B) \to (e^{-1} b_1 + e^{-1} b_2 = e^{-1}(b_1 \oplus b_2)) \end{aligned}$$

Definition

A magma is a type A together with a binary operation $+ : A \times A \rightarrow A$:

Magma := $(A : Type) \times (A \times A \rightarrow A)$.

Let **BinOp**(A) := $(A \times A) \rightarrow A$.

$$\begin{aligned} &((A, +) = (B, \oplus)) \\ &= (e : A = B) \times (BinOp_*e(+) = \oplus) \\ &= (e : A = B) \times ((b_1, b_2) : B \times B) \to (BinOp_*e(+)(b_1, b_2) = b_1 \oplus b_2) \\ &= (e : A = B) \times ((b_1, b_2) : B \times B) \to (e(e^{-1} b_1 + e^{-1} b_2) = b_1 \oplus b_2) \\ &= (e : A = B) \times ((b_1, b_2) : B \times B) \to (e^{-1} b_1 + e^{-1} b_2 = e^{-1}(b_1 \oplus b_2)) \\ &= (e : A = B) \times ((a_1, a_2) : A \times A) \to (ea_1 \oplus ea_2 = e(a_1 + a_2)) \end{aligned}$$

Contractible Types and Equivalences

Definition

For a function $f : A \rightarrow B$ and b : B, its *fiber* is the type

 $\mathsf{fib}_\mathsf{f}(\mathsf{b}) :\equiv (\mathsf{a} : \mathsf{A}) \times (\mathsf{f}(\mathsf{a}) = \mathsf{b})$

together with the map $(a, p) \mapsto a : fib_f(b) \to A$.

Definition

A center of contraction for a type A is an element c : A such that for every other element a : A, we have an identification of a with c.

$$\mathbf{Contr}(\mathsf{A}) :\equiv (\mathsf{c} : \mathsf{A}) \times ((\mathsf{a} : \mathsf{A}) \to (\mathsf{a} = \mathsf{c}))$$

Definition

A map $f : A \rightarrow B$ is an *equivalence* if its fibers are contractible:

 $\textbf{Equiv}(f):\equiv (y:Y) \rightarrow \textbf{Contr}(fib_f(y))$

Lemma (UFP)

For any two centers of contraction c, d: **Contr**(A), c = d is contractible.

Definition

• A *proposition* is a type P such that for any a, b : P, a = b is contractible.

Lemma (UFP)

For any two centers of contraction c, d: **Contr**(A), c = d is contractible.

Definition

- A *proposition* is a type P such that for any a, b : P, a = b is contractible.
- A set is a type S such that for any a, b : S, a = b is a proposition.

Lemma (UFP)

For any two centers of contraction c, d: **Contr**(A), c = d is contractible.

Definition

- A *proposition* is a type P such that for any a, b : P, a = b is contractible.
- A set is a type S such that for any a, b : S, a = b is a proposition.
- A groupoid is a type G such that for any a, b : G, a = b is a set.

Lemma (UFP)

For any two centers of contraction c, d: **Contr**(A), c = d is contractible.

Definition

- A *proposition* is a type P such that for any a, b : P, a = b is contractible.
- A set is a type S such that for any a, b : S, a = b is a proposition.

- A groupoid is a type G such that for any a, b : G, a = b is a set.
- . . .
- An n-type is a type X such that for any a, b : X, a = b is an (n 1)-type (with -2-types being contractible).

Truncation

Theorem (UFP)

For any type X, there is a proposition $\|X\|$ and a map $|\cdot|:X\to \|X\|$ and such that

for any proposition P.

Truncation

Theorem (UFP)

For any type X, there is a proposition $\|X\|$ and a map $|\cdot|:X\to \|X\|$ and such that

for any proposition P.

- $\|(a:A) \times B(a)\|$ represents the proposition $\exists a: A. B(a)$.
- If B(a) is a proposition for all a : A, then (a : A) → B(a) represents the proposition ∀a : A. B(a).

Part 2: Category Theory

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

Pre-categories

Definition

- A pre-category C consists of:
 - A type ob *C* of *objects*.
 - For each A, B : ob C, a set C(A, B) of morphisms.
 - Composition functions $\circ : \mathcal{C}(\mathsf{B},\mathsf{C}) \to \mathcal{C}(\mathsf{A},\mathsf{B}) \to \mathcal{C}(\mathsf{A},\mathsf{C}).$

- Identities $id_A : C(A, A)$.
- All the usual identities.

...And the Obvious Morphisms

An "obvious morphism" is one whose definition can be derived from the definition of the objects of a category.

...And the Obvious Morphisms

An "obvious morphism" is one whose definition can be derived from the definition of the objects of a category.

Definition

A pre-category \mathcal{C} is a *category* if the map

 $\mathsf{idtoiso}:(\mathsf{A}=\mathsf{B})\to(\mathsf{A}\cong_{\mathcal{C}}\mathsf{B})$

defined inductively by $\mathsf{refl}\mapsto\mathsf{id}_\mathsf{A}$ is an equivalence.

...And the Obvious Morphisms

An "obvious morphism" is one whose definition can be derived from the definition of the objects of a category.

Definition

A pre-category \mathcal{C} is a *category* if the map

 $\mathsf{idtoiso}: (\mathsf{A} = \mathsf{B}) \to (\mathsf{A} \cong_{\mathcal{C}} \mathsf{B})$

defined inductively by $\mathsf{refl}\mapsto\mathsf{id}_\mathsf{A}$ is an equivalence.

A category is a pre-category where the identifications between objects are precisely the isomorphisms.

- The category of sets.
- The category of groups, abelian groups, rings, vector spaces...
- The category of topological spaces, smooth manifolds, schemes...
- Functors from a pre-category to a category form a category hence any presheaf category.

Universal Properties are Properties

Proposition

Let \mathcal{C} be a category. Then the type

```
Terminal(A) := \forall X : ob C . \exists !f : C(X, A).
```

is a proposition.

Corollary

The type of limits to a diagram is a proposition.

Categorical Choice

Theorem (AKS) If $F : \mathcal{C} \to \mathcal{D}$ is a fully faithful functor between categories, then for any $Y : \mathcal{D}$,

 $(X : ob C) \times (FX \cong Y)$

is a proposition. That is,

 $\exists X : ob \mathcal{C} . (FX \cong Y) = (X : ob \mathcal{C}) \times (FX \cong Y).$

Categorical Choice

Theorem (AKS) If $F : \mathcal{C} \to \mathcal{D}$ is a fully faithful functor between categories, then for any $Y : \mathcal{D}$,

 $(\mathsf{X}:\mathsf{ob}\,\mathcal{C})\times(\mathsf{F}\mathsf{X}\cong\mathsf{Y})$

is a proposition. That is,

 $\exists X : ob \mathcal{C} . (FX \cong Y) = (X : ob \mathcal{C}) \times (FX \cong Y).$

Corollary

For categories C and D, we have

 $(\mathcal{C} = \mathcal{D}) = (\mathcal{C} \simeq \mathcal{D}) = (F : Fun(\mathcal{C}, \mathcal{D})) \times (F \text{ is ess. surj. fully faithful}).$

No More "With a Choice of Pullbacks"

Theorem

Suppose that every diagram of shape \mathcal{D} in \mathcal{C} admits a limit. Then there is a functor lim : $\operatorname{Fun}(\mathcal{C}^{\mathcal{D}}, \mathcal{C})$ taking a diagram to its limit.

Proof.

The category of diagrams with a limit is a full subcategory of diagrams. If every diagram has a limit, then this fully faithful functor is an equivalence. The composite of the inverse with the functor that projects out the limit is then the desired limit functor. $\hfill \Box$

References

- Homotopy Type Theory, Univalent Foundations Project, 2013
- Univalent Categories and the Rezk Completion, Ahrens, Kapulkin, Shulman, 2014

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <