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Part 1: Homotopy Type Theory



How do you identify one thing with another?

It depends what type of things they are.

To identify the affine plane with R2, we need to choose a point to
serve as the origin.

To identify the tangent space of S2 at the point ( 1√
3
, 1√

3
, 1√

3
) with

R2, we need to give a basis {∂1, ∂2} of it. Then we can identify any
tangent vector

v = v1∂1 + v2∂2 with

[
v1

v2

]

To identify Hn(Sn; Z) with Z, we must choose an orientation for the
n-sphere Sn.

To identify the natural number n such that π4(S3) is isomorphic to
Z/n with the number 2, we need to prove that n equals 2.
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Type Theory

A type is a type of mathematical thing.

Type theory gives rules for making new types and new terms of them.
It is a full foundation of mathematics, from scratch.

a term : its type

a : A

3 : N
N : Set

TpM : VectR

VectR : Type



Judgements

a : A

is not a “proposition” – it is not up for debate.

Saying 3 : N is a judgement: the fact that 3 is a number is just part
of what we mean by 3.

3 : Z and 3 : Q are different 3s. For example, the second is a unit
while the first is not.

Similarly, we use “a ≡ b” to say that a is judged to be equal to b by
definition. For example,

3 ≡ suc(suc(suc(0))).
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Identifications

For a and b : A,
a =A b : Type

is the type of identifications of a with b as elements of A.a

aWe’ll define this in a few slides

For V and W : VectR, then V = W is the type of R-linear
isomorphisms between V and W.

For X and Y : Set, then X = Y is the type of bijections of between
them.

For M and N : Mfd∞, then M = N is the type of smooth
diffeomorphisms between them.

For n and m : N, then n = m has an element if and only if n equals m
– there is at most one way to identify two natural numbers.

Axiom (Univalence)

If X and Y are types, then X = Y is the type of equivalences of X with Y.



Identifications

For a and b : A,
a =A b : Type

is the type of identifications of a with b as elements of A.a

aWe’ll define this in a few slides

For V and W : VectR, then V = W is the type of R-linear
isomorphisms between V and W.

For X and Y : Set, then X = Y is the type of bijections of between
them.

For M and N : Mfd∞, then M = N is the type of smooth
diffeomorphisms between them.

For n and m : N, then n = m has an element if and only if n equals m
– there is at most one way to identify two natural numbers.

Axiom (Univalence)

If X and Y are types, then X = Y is the type of equivalences of X with Y.



Identifications

For a and b : A,
a =A b : Type

is the type of identifications of a with b as elements of A.a

aWe’ll define this in a few slides

For V and W : VectR, then V = W is the type of R-linear
isomorphisms between V and W.

For X and Y : Set, then X = Y is the type of bijections of between
them.

For M and N : Mfd∞, then M = N is the type of smooth
diffeomorphisms between them.

For n and m : N, then n = m has an element if and only if n equals m
– there is at most one way to identify two natural numbers.

Axiom (Univalence)

If X and Y are types, then X = Y is the type of equivalences of X with Y.



Identifications

For a and b : A,
a =A b : Type

is the type of identifications of a with b as elements of A.a

aWe’ll define this in a few slides

For V and W : VectR, then V = W is the type of R-linear
isomorphisms between V and W.

For X and Y : Set, then X = Y is the type of bijections of between
them.

For M and N : Mfd∞, then M = N is the type of smooth
diffeomorphisms between them.

For n and m : N, then n = m has an element if and only if n equals m
– there is at most one way to identify two natural numbers.

Axiom (Univalence)

If X and Y are types, then X = Y is the type of equivalences of X with Y.



Identifications

For a and b : A,
a =A b : Type

is the type of identifications of a with b as elements of A.a

aWe’ll define this in a few slides

For V and W : VectR, then V = W is the type of R-linear
isomorphisms between V and W.

For X and Y : Set, then X = Y is the type of bijections of between
them.

For M and N : Mfd∞, then M = N is the type of smooth
diffeomorphisms between them.

For n and m : N, then n = m has an element if and only if n equals m
– there is at most one way to identify two natural numbers.

Axiom (Univalence)

If X and Y are types, then X = Y is the type of equivalences of X with Y.



Identifications

For a and b : A,
a =A b : Type

is the type of identifications of a with b as elements of A.a

aWe’ll define this in a few slides

For V and W : VectR, then V = W is the type of R-linear
isomorphisms between V and W.

For X and Y : Set, then X = Y is the type of bijections of between
them.

For M and N : Mfd∞, then M = N is the type of smooth
diffeomorphisms between them.

For n and m : N, then n = m has an element if and only if n equals m
– there is at most one way to identify two natural numbers.

Axiom (Univalence)

If X and Y are types, then X = Y is the type of equivalences of X with Y.



Functions

Every thing is a certain kind of thing.

In a type theory, every free variable must be annotated with its type.

Given types A and B depending on A,

(a : A)→ B(a) or, sometimes, Πa:AB(a)

is the type of functions from A to B. (We write A→ B if B
doesn’t depend on A.)
To define a function f : (a : A)→ B(a), assume a free a : A, and write
down an element f(a) : B(a); then f is the function a 7→ f(a).
E.g., if M : Manifold and p : M, then we can define the tangent
space TpM : VectorSpace. So p 7→ TpM : M→ VectorSpace.
Since for any p : M, we have that 0 : TpM, we get a function
p 7→ 0 : (p : M)→ TpM – the zero vector field.
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Pairs

Given A : Type with B(a) depending on a : A, then

(a : A)× B(a) or, sometimes, Σa:AB(a)

is the type of pairs (a, b) with a : A and b : B(a).

The type (p : M)× TpM is the total space of tangent bundle.

Note that (p : M)→ TpM is the type of sections to
(p, v) 7→ p : (p : M)× TpM→ M
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Inductive Types: Natural Numbers

If a type A is an inductive type, we may assume that a free variable a : A
is of one several prescribed forms.

We may assume a free natural number n : N is either of the form
1 n ≡ 0, or
2 n ≡ suc(m) with m : N.

To define + : N→ (N→ N), we assume a free variable n : N and
seek a function of type N→ N.

1 If n ≡ 0, then we have id ≡ x 7→ x : N→ N, or
2 If n ≡ suc(m), then we have x 7→ suc(x + m) : N→ N

In total, we have

n 7→

{
x 7→ x if n ≡ 0

x 7→ suc(x + m) if n ≡ suc(m).
: N→ (N→ N)
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The Type of Identifications

Given any two terms a, b : A, we have a type a =A b of identifications
of a with b.

We may assume that free variables b : A and p : a =A b are of the
form

1 refl : a =A a.

To define sym : (a, b : A)→ a =A b→ b =A a, assume that a, b : A
and p : a =A b are free variables.

1 If b ≡ a and p ≡ refl, then refl : b =A a.

So,

a, b, p 7→
{

refl if p ≡ refl : (a, b : A)→ a =A b→ b =A a.
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Composing Identifications

Proposition

Given p : a = b and q : b = c, we get an identification p • q : a = c.

Proposition

Given p : a = b, we have reflleftp : refl •p = p, and similarly on the right.

Proposition

Given p : a = b, q : b = c, and r : c = d, we have an identification

assocp,q,r : (p • q) • r = p • (q • r)

Proposition

. . . and as my coherences as you like!
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Every Function a Functor

Proposition

Let f : A→ B be a function and suppose p : a1 = a2. Then we have

f∗p : f(a1) = f(a2).

Proposition

Let f : A→ B be a function and suppose p : a1 = a2 and q : a2 = a3.
Then we have

functp,q : f∗(p • q) = f∗p • f∗q.



Identifying Functions and Pairs

Proposition

Let f, g : (a : A)→ B(a) be functions. Then

(f = g) = (a : A)→ (fa = ga).

Proposition

Let (a1, b1), (a2, b2) : (a : A)× B(a) be pairs. Then(
(a1, b1) = (a2, b2)

)
= (p : a1 = a2)× (B∗p(b1) = b2).
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Identifying Magmas

Definition

A magma is a type A together with a binary operation + : A× A→ A:

Magma :≡ (A : Type)× (A× A→ A).

Let BinOp(A) :≡ (A× A)→ A.

((A,+) = (B,⊕))

= (e : A = B)× (BinOp∗e(+) = ⊕)

= (e : A = B)× ((b1, b2) : B× B)→ (BinOp∗e(+)(b1, b2) = b1 ⊕ b2)

= (e : A = B)× ((b1, b2) : B× B)→ (e(e -1 b1 + e -1 b2) = b1 ⊕ b2)

= (e : A = B)× ((b1, b2) : B× B)→ (e -1 b1 + e -1 b2 = e -1(b1 ⊕ b2))

= (e : A = B)× ((a1, a2) : A× A)→ (ea1 ⊕ ea2 = e(a1 + a2))
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= (e : A = B)× ((b1, b2) : B× B)→ (e -1 b1 + e -1 b2 = e -1(b1 ⊕ b2))

= (e : A = B)× ((a1, a2) : A× A)→ (ea1 ⊕ ea2 = e(a1 + a2))
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Contractible Types and Equivalences

Definition

For a function f : A→ B and b : B, its fiber is the type

fibf(b) :≡ (a : A)× (f(a) = b)

together with the map (a, p) 7→ a : fibf(b)→ A.

Definition

A center of contraction for a type A is an element c : A such that for every
other element a : A, we have an identification of a with c.

Contr(A) :≡ (c : A)×
(
(a : A)→ (a = c)

)
Definition

A map f : A→ B is an equivalence if its fibers are contractible:

Equiv(f) :≡ (y : Y)→ Contr(fibf(y))



Propositions, Sets, and More

Lemma (UFP)

For any two centers of contraction c, d : Contr(A), c = d is contractible.

Definition

A proposition is a type P such that for any a, b : P, a = b is
contractible.

A set is a type S such that for any a, b : S, a = b is a proposition.

A groupoid is a type G such that for any a, b : G, a = b is a set.

. . .

An n-type is a type X such that for any a, b : X, a = b is an
(n− 1)-type (with −2-types being contractible).
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Truncation

Theorem (UFP)

For any type X, there is a proposition ‖X‖ and a map | · | : X→ ‖X‖ and
such that

X P

‖X‖

∀

|·|
∃!

for any proposition P.

‖(a : A)× B(a)‖ represents the proposition ∃a : A.B(a).

If B(a) is a proposition for all a : A, then (a : A)→ B(a) represents
the proposition ∀a : A.B(a).
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Part 2: Category Theory



Pre-categories

Definition

A pre-category C consists of:

A type ob C of objects.

For each A, B : ob C, a set C(A,B) of morphisms.

Composition functions ◦ : C(B,C)→ C(A,B)→ C(A,C).

Identities idA : C(A,A).

All the usual identities.



...And the Obvious Morphisms

An “obvious morphism” is one whose definition can be derived from the
definition of the objects of a category.

Definition

A pre-category C is a category if the map

idtoiso : (A = B)→ (A ∼=C B)

defined inductively by refl 7→ idA is an equivalence.

A category is a pre-category where the identifications between objects are
precisely the isomorphisms.

The category of sets.
The category of groups, abelian groups, rings, vector spaces...
The category of topological spaces, smooth manifolds, schemes...
Functors from a pre-category to a category form a category – hence
any presheaf category.
. . .
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Universal Properties are Properties

Proposition

Let C be a category. Then the type

Terminal(A) :≡ ∀X : ob C .∃!f : C(X,A).

is a proposition.

Corollary

The type of limits to a diagram is a proposition.



Categorical Choice

Theorem (AKS)

If F : C → D is a fully faithful functor between categories, then for any
Y : D,

(X : ob C)× (FX ∼= Y)

is a proposition. That is,

∃X : ob C . (FX ∼= Y) = (X : ob C)× (FX ∼= Y).

Corollary

For categories C and D, we have

(C = D) = (C ' D) = (F : Fun(C,D))× (F is ess. surj. fully faithful).
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No More “With a Choice of Pullbacks”

Theorem

Suppose that every diagram of shape D in C admits a limit. Then there is
a functor lim : Fun(CD, C) taking a diagram to its limit.

Proof.

The category of diagrams with a limit is a full subcategory of diagrams. If
every diagram has a limit, then this fully faithful functor is an equivalence.
The composite of the inverse with the functor that projects out the limit is
then the desired limit functor.
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