Logical Topology and Axiomatic Cohesion

David Jaz Myers

Johns Hopkins University

March 12, 2019

David Jaz Myers (Johns Hopkins University) Logical Topology and Axiomatic Cohesion

3

• Lawvere proposes to continue the following dialogue: "What is a space?"

• Lawvere proposes to continue the following dialogue:

"What is a space?" "It is an object of a category of spaces."

• Lawvere proposes to continue the following dialogue:

• Lawvere proposes to continue the following dialogue:

"What is a space?" "It is an object of a category of spaces." "Then what is a category of spaces?"

• Lawvere's *wu wei* axiomatization of "space": modalities that remove all "spatial cohesion" in three different ways.

• Lawvere proposes to continue the following dialogue:

- Lawvere's *wu wei* axiomatization of "space": modalities that remove all "spatial cohesion" in three different ways.
 - #: whose modal types are the codiscrete spaces.

• Lawvere proposes to continue the following dialogue:

- Lawvere's *wu wei* axiomatization of "space": modalities that remove all "spatial cohesion" in three different ways.
 - #: whose modal types are the codiscrete spaces.
 - b: whose modal types are the discrete spaces.

• Lawvere proposes to continue the following dialogue:

- Lawvere's *wu wei* axiomatization of "space": modalities that remove all "spatial cohesion" in three different ways.
 - #: whose modal types are the codiscrete spaces.
 - b: whose modal types are the discrete spaces.
 - ► J: whose modal types are the discrete spaces (but whose action is different).

Some gros topoï of interest are cohesive toposes:

Some gros topoï of interest are cohesive toposes:

• Continuous Sets as in Shulman's Real Cohesion.

Some gros topoï of interest are cohesive toposes:

- Continuous Sets as in Shulman's Real Cohesion.
- **Dubuc's Topos** and **Formal Smooth Sets** as in Synthetic Differential Geometry and Schreiber's *Differential Cohesion*.

Some gros topoï of interest are cohesive toposes:

- Continuous Sets as in Shulman's Real Cohesion.
- **Dubuc's Topos** and **Formal Smooth Sets** as in Synthetic Differential Geometry and Schreiber's *Differential Cohesion*.
- Menni's Topos (similar to the big Zariski Topos) as in algebraic geometry.*

Some gros topoï of interest are cohesive toposes:

- Continuous Sets as in Shulman's Real Cohesion.
- **Dubuc's Topos** and **Formal Smooth Sets** as in Synthetic Differential Geometry and Schreiber's *Differential Cohesion*.
- Menni's Topos (similar to the big Zariski Topos) as in algebraic geometry.*
- In all of these models, there are suitably nice spaces
 - continous manifolds,
 - smooth manifolds,
 - (suitable) schemes,

which have topologies (via open sets) on their underlying sets.

Penon's Logical Topology

In his thesis, Penon defined a Logical Topology held by any type.

Definition (Penon)

A subtype $U: A \rightarrow \mathbf{Prop}$ is logically open if

• For all x, y : A with x in U, either $x \neq y$ or y is in U.

Penon's Logical Topology

In his thesis, Penon defined a Logical Topology held by any type.

Definition (Penon)

A subtype $U: A \rightarrow \mathbf{Prop}$ is logically open if

• For all x, y : A with x in U, either $x \neq y$ or y is in U.

Penon and Dubuc proved that in the three examples

- Continuous Sets: Logical opens on continous manifolds are ε-ball opens.
- Dubuc's Topos: Logical opens on smooth manifolds are ϵ -ball opens.
- Zariski Topos: Logical opens on (suitable) separable schemes are Zariski opens.

• • = • • = •

Motivating Question:

How does the logical topology on a type compare with its cohesion?

3

Motivating Question:

How does the logical topology on a type compare with its cohesion?

We will see two glimpses today:

- The path connected components $\int_0 A$ (defined through cohesion) are the same as the logically connected components of A.
- A set is **Leibnizian** (defined through cohesion) if and only if it is de Morgan (a logical notion).

In his Real Cohesion, Shulman gave a type theory for axiomatic cohesion.

In his *Real Cohesion*, Shulman gave a type theory for axiomatic cohesion. Cohesive type theory uses two kinds of variables:

- Cohesive variables, which vary "continuously".
- Crisp variables, which vary "discontinuously".

In his *Real Cohesion*, Shulman gave a type theory for axiomatic cohesion. Cohesive type theory uses two kinds of variables:

- Cohesive variables, which vary "continuously".
- Crisp variables, which vary "discontinuously".

Following Shulman, we assume the following:

Axiom (LEM)

If $P :: \mathbf{Prop}$ is a crisp proposition, then either P or $\neg P$ holds.

In his *Real Cohesion*, Shulman gave a type theory for axiomatic cohesion. Cohesive type theory uses two kinds of variables:

- Cohesive variables, which vary "continuously".
- Crisp variables, which vary "discontinuously".

Following Shulman, we assume the following:

Axiom (LEM)

If $P :: \mathbf{Prop}$ is a crisp proposition, then either P or $\neg P$ holds.

Every discontinuous proposition is either true or false.

We will also assume that \int is given by nullifying some "basic contractible space(s)".

Axiom (Punctual Local Contractibility)

There is a type \mathbb{A} :: **Type** such that:

- A crisp type X is discrete if and only if it is homotopical the inclusion of constants X → (A → X) is an equivalence, and
- There is a point 0 :: A in each of these types.

We will also assume that \int is given by nullifying some "basic contractible space(s)".

Axiom (Punctual Local Contractibility)

There is a type \mathbb{A} :: **Type** such that:

- A crisp type X is discrete if and only if it is homotopical the inclusion of constants X → (A → X) is an equivalence, and
- There is a point 0 :: A in each of these types.

We can consider a map $\gamma : \mathbb{A} \to X$ to be a *path* in *X*.

This means that ∫ A is the homotopy type (or fundamental ∞-groupoid) of A, considered as a discrete type.

We will also assume that \int is given by nullifying some "basic contractible space(s)".

Axiom (Punctual Local Contractibility)

There is a type \mathbb{A} :: **Type** such that:

- A crisp type X is discrete if and only if it is homotopical the inclusion of constants X → (A → X) is an equivalence, and
- There is a point 0 :: A in each of these types.

We can consider a map $\gamma : \mathbb{A} \to X$ to be a *path* in *X*.

- This means that ∫ A is the homotopy type (or fundamental ∞-groupoid) of A, considered as a discrete type.
- And, therefore,

$$\int_0 A :\equiv \left\| \int A \right\|_0$$

is the set of path connected components of A.

Path components = Connected components?

• So,

$$\int_0 A :\equiv \left\| \int A \right\|_0$$

is the set of path connected components of A.

Path components = Connected components?

So,

$$\int_0 A :\equiv \left\| \int A \right\|_0$$

is the set of path connected components of A.

• Is it also the set of *logical* connected components of A?

The Powerset of a Type

Definition

Given a type A, its *powerset* $\mathcal{P}A :\equiv A \rightarrow \mathbf{Prop}$ is the set of propositions depending on an a : A.

The Powerset of a Type

Definition

Given a type A, its *powerset* $\mathcal{P}A :\equiv A \rightarrow \mathbf{Prop}$ is the set of propositions depending on an a : A. The order on subtypes is given by:

 $P \subseteq Q :\equiv \forall a. Pa \Rightarrow Qa$

We define the usual operations on subtypes point-wise:

$$P \cap Q :\equiv \lambda a. Pa \land Qa$$

 $P \cup Q :\equiv \lambda a. Pa \lor Qa$
 $\neg P :\equiv \lambda a. \neg Pa$

Definition

A subtype U : P A is merely inhabited if there is merely an a : A such that Ua.

Definition

- A subtype U : P A is merely inhabited if there is merely an a : A such that Ua.
- **2** A subtype $U : \mathcal{P} A$ is *detachable* if for all a : A, Ua or $\neg Ua$.

Definition

- A subtype U : P A is merely inhabited if there is merely an a : A such that Ua.
- **2** A subtype $U : \mathcal{P} A$ is *detachable* if for all a : A, Ua or $\neg Ua$.
- A subtype U : P A is logically connected if for all P : P A, if U ⊆ P ∪ ¬P, then U ⊆ P or U ⊆ ¬P.

Definition

- A subtype U : P A is merely inhabited if there is merely an a : A such that Ua.
- **2** A subtype $U : \mathcal{P} A$ is *detachable* if for all a : A, Ua or $\neg Ua$.
- A subtype U : P A is logically connected if for all P : P A, if U ⊆ P ∪ ¬P, then U ⊆ P or U ⊆ ¬P.

Definition

A subtype $U : \mathcal{P} A$ is a *logical connected component* if it is merely inhabited, detachable, and logically connected.

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

Definition

- A subtype U : P A is merely inhabited if there is merely an a : A such that Ua.
- **2** A subtype $U : \mathcal{P} A$ is *detachable* if for all a : A, Ua or $\neg Ua$.
- S A subtype U : P A is logically connected if for all P : P A, if U ⊆ P ∪ ¬P, then U ⊆ P or U ⊆ ¬P.

Definition

A subtype $U : \mathcal{P} A$ is a *logical connected component* if it is merely inhabited, detachable, and logically connected.

Lemma

If U and V are logical connected components of A, and $U \cap V$ is non-empty, then U = V.

March 12, 2019 10 / 22

 \int_0 gives the Logical Connected Components We let $\int_0 A :\equiv \|\int A\|_0$, and $\sigma_0 : A \to \int_0 A$ be its unit.

3

We let $\int_0 A := \|\int A\|_0$, and $\sigma_0 : A \to \int_0 A$ be its unit.

Lemma

For any type A and any $u : \int_0 A$, the proposition $\sigma_0^* u :\equiv \lambda a. \sigma_0 a = u$ is a logical connected component of A.

We let $\int_0 A := \|\int A\|_0$, and $\sigma_0 : A \to \int_0 A$ be its unit.

Lemma

For any type A and any $u : \int_0 A$, the proposition $\sigma_0^* u :\equiv \lambda a. \sigma_0 a = u$ is a logical connected component of A.

Proof.

• $\sigma_0^* u$ is merely inhabited because σ_0 is merely surjective (PLC).

3

We let $\int_0 A := \|\int A\|_0$, and $\sigma_0 : A \to \int_0 A$ be its unit.

Lemma

For any type A and any $u : \int_0 A$, the proposition $\sigma_0^* u := \lambda a$. $\sigma_0 a = u$ is a logical connected component of A.

Proof.

- $\sigma_0^* u$ is merely inhabited because σ_0 is merely surjective (PLC).
- Since $\int_0 A$ is a discrete set, it has decideable equality (LEM). Therefore, $\sigma_0^* u$ is detachable.

We let $\int_0 A := \|\int A\|_0$, and $\sigma_0 : A \to \int_0 A$ be its unit.

Lemma

For any type A and any $u : \int_0 A$, the proposition $\sigma_0^* u :\equiv \lambda a. \sigma_0 a = u$ is a logical connected component of A.

Proof.

- $\sigma_0^* u$ is merely inhabited because σ_0 is merely surjective (PLC).
- Since ∫₀ A is a discrete set, it has decideable equality (LEM). Therefore, σ₀^{*}u is detachable.
- If σ₀^{*}u ⊆ P ∪ ¬P, then we can define P

 (a: A) × σ₀^{*}u(a) → {0, 1}
 by cases. But (a: A) × σ₀^{*}u(a) ≡ fib_{σ0}(u) and so is ∫₀-connected;
 therefore, P
 is constant, and σ₀^{*}u ⊆ P or σ₀^{*}u ⊆ ¬P.

3

イロト イポト イヨト イヨト

Theorem

For a type A, the map σ_0^* gives an equivalence between $\int_0 A$ and the set of logical connected components of A.

Infinitesimals and Double Negation

In his paper *Infinitesimaux et Intuitionisme*, Penon makes the following claims:

Proposition (Kock)

In the big Zariski or étale topos, with ${\mathbb A}$ the affine line,

$$\neg \neg \{0\} = \operatorname{Spec}(\mathbb{Z}[[t]]) = \{a : \mathbb{A} \mid \exists n. a^n = 0\}$$

is the set of nilpotent infinitesimals.

Infinitesimals and Double Negation

In his paper *Infinitesimaux et Intuitionisme*, Penon makes the following claims:

Proposition (Kock)

In the big Zariski or étale topos, with ${\mathbb A}$ the affine line,

$$\neg \neg \{0\} = \mathsf{Spec}(\mathbb{Z}[[t]]) = \{a : \mathbb{A} \mid \exists n. a^n = 0\}$$

is the set of nilpotent infinitesimals.

Proposition (Penon)

In Dubuc's topos, with \mathbb{A} the sheaf co-represented by $\mathcal{C}^{\infty}(\mathbb{R})$,

$$eggr{0} = \pounds(\mathcal{C}_0^\infty(\mathbb{R}))$$

is co-represented by the germs of smooth functions at 0.

Ainsi donc l'écriture

$\neg \neg \{0\} = \{ \text{Infinitésimaux} \}$

est justifiée.

Definition

Let A : **Type**, and let a, b : A. We say a and b are **neighbors** if they are not distinct:

$$a \approx b :\equiv \neg \neg (a = b).$$

3

Definition

Let A : **Type**, and let a, b : A. We say a and b are **neighbors** if they are not distinct:

$$a pprox b :\equiv \neg \neg (a = b).$$

Proposition

The neighboring relation is reflexive, symmetric, and transitive, and is preserved by any function $f : A \rightarrow B$.

- For a : A, $a \approx a$,
- For $a, b : A, a \approx b$ implies $b \approx a$,
- For $a, b, c : A, a \approx b$ and $b \approx c$ imply $a \approx c$,
- For a, b : A and $f : A \rightarrow B$, if $a \approx b$, then $f(a) \approx f(b)$.

Definition

The **neighborhood** \mathbb{D}_a of a : A is the type of all its neighbors:

 $\mathbb{D}_a :\equiv (b:A) \times a \approx b.$

3

Definition

The **neighborhood** \mathbb{D}_a of a : A is the type of all its neighbors:

 $\mathbb{D}_a :\equiv (b:A) \times a \approx b.$

The **germ** of $f : A \rightarrow B$ at a : A is

 $egin{aligned} df_{\mathsf{a}} : \mathbb{D}_{\mathsf{a}} &
ightarrow \mathbb{D}_{f(\mathsf{a})} \ (d,_) &\mapsto (f(d),_) \end{aligned}$

3

Definition

The **neighborhood** \mathbb{D}_a of a : A is the type of all its neighbors:

$$\mathbb{D}_a :\equiv (b:A) \times a \approx b.$$

The **germ** of $f : A \rightarrow B$ at a : A is

 $egin{aligned} df_{a}:\mathbb{D}_{a} o\mathbb{D}_{f(a)}\ (d,_)\mapsto(f(d),_) \end{aligned}$

Proposition

(Chain rule) For $f : A \rightarrow B$, $g : B \rightarrow A$, and a : A,

$$d(g \circ f)_a = dg_{f(a)} \circ df_a.$$

3

イロト イポト イヨト イヨト

Cohesion Refresher

Theorem (Shulman)

 \sharp is lex: for any x, y : A, there is an equivalence $(x^{\sharp} = y^{\sharp}) \simeq \sharp (x = y)$ such that the following diagram commutes.

Lemma (Shulman)

For any P : **Prop**, $\sharp P = \neg \neg P$, and a proposition is codiscrete if and only if it is not-not stable.

Codiscretes and Infinitesimals

Putting these facts together, we get:

Proposition

For a set A and points a, b : A,

$$approx b \equiv \neg \neg (a=b) \iff \sharp (a=b) \iff a^\sharp = b^\sharp$$

3

Codiscretes and Infinitesimals

Putting these facts together, we get:

Proposition

For a set A and points a, b : A,

$$a pprox b \equiv \neg \neg (a = b) \iff \sharp (a = b) \iff a^{\sharp} = b^{\sharp}$$

Corollary

0 is the only crisp infinitesimal.

David Jaz Myers (Johns Hopkins University) Logical Topology and Axiomatic Cohesion

Codiscretes and Infinitesimals

Putting these facts together, we get:

Proposition

For a set A and points a, b : A,

$$a pprox b \equiv \neg \neg (a = b) \iff \sharp (a = b) \iff a^{\sharp} = b^{\sharp}$$

Corollary

0 is the only crisp infinitesimal.

In fact, since

$$\begin{aligned} \mathsf{fib}_{(-)^{\sharp}}(x^{\sharp}) &:\equiv (y : A) \times x^{\sharp} = y^{\sharp} \\ &\simeq (y : A) \times x \approx y \equiv: \mathbb{D}_{x} \end{aligned}$$

we have that all formal discs \mathbb{D}_x are \sharp -connected.

Definition (Lawvere)

A set A is Leibnizian if $\sharp \sigma : \sharp A \to \sharp \int A$ is an equivalence, where $\sigma : A \to \int A$ is the unit.

Definition (Lawvere)

A set A is Leibnizian if $\sharp \sigma : \sharp A \to \sharp \int A$ is an equivalence, where $\sigma : A \to \int A$ is the unit. For crisp sets, this is equivalent to the *points-to-pieces* transform

 $\sigma \circ (-)_{\flat} : \flat A \to \int A$ being an equivalence.

Every piece contains exactly one crisp point.

Definition (Lawvere)

A set A is Leibnizian if $\sharp \sigma : \sharp A \to \sharp \int A$ is an equivalence, where $\sigma : A \to \int A$ is the unit. For crisp sets, this is equivalent to the *points-to-pieces* transform

 $\sigma \circ (-)_{\flat} : \flat A \rightarrow \int A$ being an equivalence.

Every piece contains exactly one crisp point.

Definition

The Leibniz core $\mathcal{L}A$ of a crisp set A is the pullback

$$\mathcal{L} A :\equiv (a : \flat A) imes (b : A) imes a_{\flat}^{\sharp} = b^{\sharp}$$

 $\simeq (a : \flat A) imes \mathbb{D}_{a_{\flat}}$

Definition (Lawvere)

A set A is Leibnizian if $\sharp \sigma : \sharp A \to \sharp \int A$ is an equivalence, where $\sigma : A \to \int A$ is the unit. For crisp sets, this is equivalent to the *points-to-pieces* transform

 $\sigma \circ (-)_{\flat} : \flat A \to \int A$ being an equivalence.

Every piece contains exactly one crisp point.

Definition

The Leibniz core $\mathcal{L}A$ of a crisp set A is the pullback

$$\mathcal{L} A :\equiv (a : \flat A) imes (b : A) imes a_{\flat}^{\sharp} = b^{\sharp} \ \simeq (a : \flat A) imes \mathbb{D}_{a_{\flat}}$$

A Set is Leibnizian if and only if it is de Morgan

Definition

A type A is de Morgan if for all a, b : A,

 $a \approx b$ or $a \not\approx b$.

A Set is Leibnizian if and only if it is de Morgan

Definition

A type A is de Morgan if for all a, b : A,

 $a \approx b$ or $a \not\approx b$.

Theorem

A set A is Leibnizian if and only if it is de Morgan

A Set is Leibnizian if and only if it is de Morgan

Definition

A type A is de Morgan if for all a, b : A,

 $a \approx b$ or $a \not\approx b$.

Theorem

A set A is Leibnizian if and only if it is de Morgan

Compare with:

Theorem (Shulman)

A set A is discrete if and only if it is decidable – that is,

for
$$a, b : A, a = b$$
 or $a \neq b$.

Theorem

A set A is Leibnizian if and only if it is de Morgan

If A is Leibnizian, then $\sharp \sigma_0$ is an equivalence as well. For a, b : A, either $\sigma_0 a = \sigma_0 b$ or not; therefor, $({}_0a)^{\sharp} = (\sigma_0 b)^{\sharp}$ or not.

Theorem

A set A is Leibnizian if and only if it is de Morgan

If A is Leibnizian, then $\sharp \sigma_0$ is an equivalence as well. For a, b : A, either $\sigma_0 a = \sigma_0 b$ or not; therefor, $({}_0a)^{\sharp} = (\sigma_0 b)^{\sharp}$ or not. Naturality then gives us that $\sharp \sigma_0(a^{\sharp}) = \sharp \sigma_0(b^{\sharp})$ or not. But $\sharp \sigma_0$ is an equivalence, so $a^{\sharp} = b^{\sharp}$ or not.

Theorem

A set A is Leibnizian if and only if it is de Morgan

If A is Leibnizian, then $\sharp \sigma_0$ is an equivalence as well. For a, b : A, either $\sigma_0 a = \sigma_0 b$ or not; therefor, $({}_0a)^{\sharp} = (\sigma_0 b)^{\sharp}$ or not. Naturality then gives us that $\sharp \sigma_0(a^{\sharp}) = \sharp \sigma_0(b^{\sharp})$ or not. But $\sharp \sigma_0$ is an equivalence, so $a^{\sharp} = b^{\sharp}$ or not.

On the other hand, if A is de Morgan we can give an inverse to \sharp by sending $u : \sharp \int A$ to x^{\sharp} where $\sigma x = u_{\sharp}$.

Theorem

A set A is Leibnizian if and only if it is de Morgan

If A is Leibnizian, then $\sharp \sigma_0$ is an equivalence as well. For a, b : A, either $\sigma_0 a = \sigma_0 b$ or not; therefor, $({}_0a)^{\sharp} = (\sigma_0 b)^{\sharp}$ or not. Naturality then gives us that $\sharp \sigma_0(a^{\sharp}) = \sharp \sigma_0(b^{\sharp})$ or not. But $\sharp \sigma_0$ is an equivalence, so $a^{\sharp} = b^{\sharp}$ or not.

On the other hand, if A is de Morgan we can give an inverse to \sharp by sending $u : \sharp \int A$ to x^{\sharp} where $\sigma x = u_{\sharp}$. This is well defined since we can map $y : \operatorname{fib}_{\sigma}(\sigma x)$ to $\{0, 1\}$ according to whether or not $y \approx x$; this shows that every y in the fiber of σx is its neighbor, and therefore that $y^{\sharp} = x^{\sharp}$.

References

Jacques Penon. De l'infinitésimal au local (thèse de doctorat d'état). *Diagrammes*, S13:1–191, 1985.

Michael Shulman. Brouwer's fixed-point theorem in real-cohesive homotopy type theory. *arXiv e-prints*, art. arXiv:1509.07584, Sep 2015.